DNA CONSISTING 2 G-QUADRUPLEX STRUCTURE-INDUCED DIMERIZATION OF PROTEIN
Main Article Content
Abstract
Protein dimerization plays a key role in most biological processes such as transcription, signal transduction, or enzyme activation. Therefore, modulating and controlling the protein dimerization will help regulate this process in cells. In this study, control over protein dimerization was induced by DNA sequencing containing two G-quadruplex (2G4) structures. The fluorescent proteins CFP and YFP were fused with Rhau peptide, resulting in RhauCFP and RhauYFP, respectively. Protein dimerization was analyzed based on the energy transfer between CFP and YFP when these two proteins are close to each other via FRET signaling. The FRET signal was observed in the RhauCFP/RhauYFP mixture under the presence of 2G4. This shows that 2G4 is capable of inducing dimer formation of protein fusing with Rhau in vitro. This result opens up an approach for controlling the activity of functional protein dimerization by the 2G4 in biochemical applications.
Keywords
2G, CFP, Dimer, protein, YFP
Article Details
References
Bai, Y., Luo, Q., & Liu, J. (2016). Protein self-assembly via supramolecular strategies. Chem Soc Rev, 45(10), 2756-2767. doi:10.1039/c6cs00004e
Chao, Y., Shiozaki, E. N., Srinivasula, S. M., Rigotti, D. J., Fairman, R., & Shi, Y. (2005). Engineering a dimeric caspase-9: a re-evaluation of the induced proximity model for caspase activation. PLoS Biol, 3(6), e183. doi:10.1371/journal.pbio.0030183
Citri, A., & Yarden, Y. (2006). EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol, 7(7), 505-516. doi:10.1038/nrm1962
Dang D.T., S. J., and Brunsveld L. (2012). Cucurbit [8] uril-mediated protein homotetramerization. Chemical Science, 3(9), 2679-2684.
Dang, D. T., Nguyen, H. D., Merkx, M., & Brunsveld, L. (2013). Supramolecular control of enzyme activity through cucurbit[8]uril-mediated dimerization. Angew Chem Int Ed Engl, 52(10), 2915-2919. doi:10.1002/anie.201208239
Dang, D. T., Nguyen, L. T. A., Truong, T. T. T., Nguyen, H. D., & Phan, A. T. (2021). Construction of a G-quadruplex-specific DNA endonuclease. Chem Commun (Camb), 57(37), 4568-4571. doi:10.1039/d0cc05890d
Dang, D. T., & Phan, A. T. (2016). Development of Fluorescent Protein Probes Specific for Parallel DNA and RNA G-Quadruplexes. Chembiochem, 17(1), 42-45. doi:10.1002/cbic.201500503
Dang, D. T., & Phan, A. T. (2019). Development of a ribonuclease containing a G4-specific binding motif for programmable RNA cleavage. Sci Rep, 9(1), 7432. doi:10.1038/s41598-019-42143-8
Hardwick, J. S., Kuruvilla, F. G., Tong, J. K., Shamji, A. F., & Schreiber, S. L. (1999). Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A, 96(26), 14866-14870. doi:10.1073/pnas.96.26.14866
Heddi, B., Cheong, V. V., Martadinata, H., & Phan, A. T. (2015). Insights into G-quadruplex specific recognition by the DEAH-box helicase RHAU: Solution structure of a peptide-quadruplex complex. Proceedings of the National Academy of Sciences of the United States of America, 112(31), 9608-9613. doi:10.1073/pnas.1422605112
Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer, 5(5), 341-354. doi:10.1038/nrc1609
Khan, S. B., & Lee, S. L. (2021). Supramolecular Chemistry: Host-Guest Molecular Complexes. Molecules, 26(13). doi:10.3390/molecules26133995
Kochanczyk, T., Nowakowski, M., Wojewska, D., Kocyla, A., Ejchart, A., Kozminski, W., & Krezel, A. (2016). Metal-coupled folding as the driving force for the extreme stability of Rad50 zinc hook dimer assembly. Sci Rep, 6, 36346. doi:10.1038/srep36346
Maizels, N. (2015). G4-associated human diseases. EMBO Rep, 16(8), 910-922. doi:10.15252/embr.201540607
Maizels, N., & Gray, L. T. (2013). The G4 genome. PLoS Genet, 9(4), e1003468. doi:10.1371/journal.pgen.1003468
Mangal, S., Zielich, J., Lambie, E., & Zanin, E. (2018). Rapamycin-induced protein dimerization as a tool for C. elegans research. MicroPubl Biol, 2018. doi:10.17912/W2BH3H
Marianayagam, N. J., Sunde, M., & Matthews, J. M. (2004). The power of two: protein dimerization in biology. Trends Biochem Sci, 29(11), 618-625. doi:10.1016/j.tibs.2004.09.006
Mason, J. M., & Arndt, K. M. (2004). Coiled coil domains: stability, specificity, and biological implications. Chembiochem, 5(2), 170-176. doi:10.1002/cbic.200300781
Nguyen, H. D., Dang, D. T., van Dongen, J. L., & Brunsveld, L. (2010). Protein Dimerization Induced by Supramolecular Interactions with Cucurbit[8]uril. Angew Chem Int Ed Engl, 49(5), 895-898. doi:10.1002/anie.200904413
Pratt, M. R., Schwartz, E. C., & Muir, T. W. (2007). Small-molecule-mediated rescue of protein function by an inducible proteolytic shunt. Proc Natl Acad Sci U S A, 104(27), 11209-11214. doi:10.1073/pnas.0700816104
Rhodes, D., & Lipps, H. J. (2015). G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. , 43(18), 8627-8637.
Schreiber, S. L. (2021). The Rise of Molecular Glues. Cell, 184(1), 3-9. doi:10.1016/j.cell.2020.12.020
Schultz, L. W., & Clardy, J. (1998). Chemical inducers of dimerization: the atomic structure of FKBP12-FK1012A-FKBP12. Bioorg Med Chem Lett, 8(1), 1-6. doi:10.1016/s0960-894x(97)10195-0
Song, W. J., Sontz, P. A., Ambroggio, X. I., & Tezcan, F. A. (2014). Metals in protein-protein interfaces. Annu Rev Biophys, 43, 409-431. doi:10.1146/annurev-biophys-051013-023038
Truong, T. T. T., Cao, C., & Dang, D. T. (2020). Parallel G-quadruplex-mediated protein dimerization and activation. RSC Advances(10), 29957-29960. doi:doi: 10.1039/d0ra06173e