A SEMI-TRANSPARENT COMPOSITE FILM FROM RICE STRAW-BASED MICROFIBRILLATED CELLULOSE AND CHITOSAN AND ITS APPLICATION IN LIGHT MANAGEMENT

Văn Khuê Trần 1, Văn Thuận Lê 2, Minh Hiệp Nguyễn 3, Ngọc Sỹ Đặng 4, Minh Thu Đoàn 1, Hoàng Sinh Lê 5,
1 Viện Nghiên cứu và Đào tạo Việt – Anh, Đại học Đà Nẵng, 158A Lê Lợi, phường Hải Châu I, quận Hải Châu, Đà Nẵng
2 Trung tâm Hóa học Tiên tiến, Viện Nghiên cứu và Phát triển, Đại học Duy Tân, 03 Quang Trung, quận Hải Châu, Đà Nẵng Khoa Khoa học Tự nhiên, Đại học Duy Tân, 03 Quang Trung, quận Hải Châu, Đà Nẵng
3 Trung tâm Công nghệ Bức xạ và Công nghệ Sinh học, Viện Nghiên cứu Hạt nhân, 01 Nguyên Tử Lực, Đà Lạt, Lâm Đồng
4 Trung tâm Kỹ thuật Cơ khí, Đại học Duy Tân, 03 Quang Trung, quận Hải Châu, Đà Nẵng
5 Viện Nghiên cứu và Đào tạo Việt – Anh, Đại học Đà Nẵng, 158A Lê Lợi, phường Hải Châu I, quận Hải Châu, Đà Nẵng Trung tâm Hóa học Tiên tiến, Viện Nghiên cứu và Phát triển, Đại học Duy Tân, 03 Quang Trung, quận Hải Châu, Đà Nẵng

Main Article Content

Abstract

 

Semi-transparent composite film from rice straw-based microfibrillated cellulose and chitosan (MFC/CS) has been demonstrated to be a promising candidate light management material for the next generation optical engineering applications. Here, the lignin-modified MFC was prepared successfully through a green method, in which the MFC was first extracted using dilute sodium hydroxy solution on a homogenizer at 5000 rpm. The dissolved lignin was then deposited on the MFC surface by neutralizing it with a dilute hydrochloric acid solution. MFCs were obtained with diameters ranging from 2-5 μm and lengths up to 200 μm. Decoloration of lignin by removing its chromophore groups was conducted using peracetic acid treatment using a mixture of hydrogen peroxide and acid acetic with a volume ratio of 4:1. The MFC film shows good transparency and excellent diffusing effects with MFC/CS weight ratios of 1:3 and 1:1.

Article Details

References

Abuelnuor, A. A. A., Omara, A. A. M., Saqr, K. M., & Elhag, I. H. I. (2018). Improving indoor thermal comfort by using phase change materials: A review. International Journal of Energy Research, 42(6), 2084-2103. https://doi.org/10.1002/er.4000
Ascione, F., Bianco, N., Iovane, T., Mastellone, M., & Mauro, G. M. (2021). The evolution of building energy retrofit via double-skin and responsive façades: A review. Solar Energy, 224(June), 703–717. https://doi.org/10.1016/j.solener.2021.06.035
Breyer, C. (2020). A Global Overview of Future Energy. In Future Energy (pp. 727-756). Elsevier. https://doi.org/10.1016/B978-0-08-102886-5.00034-7
Djafari Petroudy, S. R., Rahmani, N., Rasooly Garmaroody, E., Rudi, H., & Ramezani, O. (2019). Comparative study of cellulose and lignocellulose nanopapers prepared from hardwood pulps: Morphological, structural and barrier properties. International Journal of Biological Macromolecules, 135, 512-520. https://doi.org/10.1016/j.ijbiomac.2019.05.212
Dong, Y., Tan, Y., Wang, K., Cai, Y., Li, J., Sonne, C., & Li, C. (2022). Reviewing wood-based solar-driven interfacial evaporators for desalination. Water Research, 223, 119011. https://doi.org/10.1016/J.WATRES.2022.119011
Eh, A. L. S. S., Tan, A. W. M., Cheng, X., Magdassi, S., & Lee, P. S. (2018). Recent Advances in Flexible Electrochromic Devices: Prerequisites, Challenges, and Prospects. Energy Technology, 6(1), 33-45. https://doi.org/10.1002/ente.201700705
Eyl-Mazzega, M.A., & Mathieu, C. (2020). The European Union and the Energy Transition. In Lecture Notes in Energy (Vol. 73, pp. 27-46). https://doi.org/10.1007/978-3-030-39066-2_2
Fang, Z., Li, G., Hou, G., & Qiu, X. (2023). Light Management of Nanocellulose Films. 179-209. https://doi.org/10.1007/978-3-031-14043-3_6
Gupta, V. K., Jain, R., Mittal, A., Saleh, T. A., Nayak, A., Agarwal, S., & Sikarwar, S. (2012). Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Materials Science and Engineering: C, 32(1), 12-17. https://doi.org/10.1016/j.msec.2011.08.018
Jiang, Y., Liu, X., Yang, Q., Song, X., Qin, C., Wang, S., & Li, K. (2019). Effects of residual lignin on composition, structure, and properties of mechanically defibrillated cellulose fibrils and films. Cellulose, 26(3), 1577-1593. https://doi.org/10.1007/s10570-018-02229-4
Jiang, Y., Wang, Z., Liu, X., Yang, Q., Huang, Q., Wang, L., Dai, Y., Qin, C., & Wang, S. (2020). Highly Transparent, UV-Shielding, and Water-Resistant Lignocellulose Nanopaper from Agro-Industrial Waste for Green Optoelectronics. ACS Sustainable Chemistry & Engineering, 8(47), 17508-17519. https://doi.org/10.1021/acssuschemeng.0c06752
Jiang, Y., Wang, Z., Zhou, L., Jiang, S., Liu, X., Zhao, H., Huang, Q., Wang, L., Chen, G., & Wang, S. (2022). Highly efficient and selective modification of lignin towards optically designable and multifunctional lignocellulose nanopaper for green light-management applications. International Journal of Biological Macromolecules, 206(January), 264-276. https://doi.org/10.1016/j.ijbiomac.2022.02.147
Lee, J., & Yang, J.-S. (2019). Global energy transitions and political systems. Renewable and Sustainable Energy Reviews, 115(August), 109370. https://doi.org/10.1016/j.rser.2019.109370
Li, T., Chen, C., Brozena, A. H., Zhu, J. Y., Xu, L., Driemeier, C., Dai, J., Rojas, O. J., Isogai, A., Wågberg, L., & Hu, L. (2021). Developing fibrillated cellulose as a sustainable technological material. Nature, 590(7844), 47-56. https://doi.org/10.1038/s41586-020-03167-7
Lizundia, E., Sipponen, M. H., Greca, L. G., Balakshin, M., Tardy, B. L., Rojas, O. J., & Puglia, D. (2021). Multifunctional lignin-based nanocomposites and nanohybrids. Green Chemistry, 23(18), 6698-6760. https://doi.org/10.1039/D1GC01684A
Lucas, M., & Peres, J. (2006). Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments, 71(3), 236-244. https://doi.org/10.1016/j.dyepig.2005.07.007
Mariano-Hernández, D., Hernández-Callejo, L., Zorita-Lamadrid, A., Duque-Pérez, O., & Santos García, F. (2021). A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis. Journal of Building Engineering, 33, 101692. https://doi.org/10.1016/j.jobe.2020.101692
Mi, R., Chen, C., Keplinger, T., Pei, Y., He, S., Liu, D., Li, J., Dai, J., Hitz, E., Yang, B., Burgert, I., & Hu, L. (2020). Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, 11(1), 3836. https://doi.org/10.1038/s41467-020-17513-w
Mohelnikova, J. (2011). Nanocoatings for architectural glass. In Nanocoatings and Ultra-Thin Films (pp. 182-202). Elsevier. https://doi.org/10.1533/9780857094902.2.182
Oliaei, E., Lindén, P. A., Wu, Q., Berthold, F., Berglund, L., & Lindström, T. (2020). Microfibrillated lignocellulose (MFLC) and nanopaper films from unbleached kraft softwood pulp. Cellulose, 27(4), 2325-2341. https://doi.org/10.1007/s10570-019-02934-8
Park, S.-Y., Choi, J. H., Kim, J.-H., Cho, S. M., Yeon, S., Jeong, H., Lee, S. M., & Choi, I. G. (2020). Peracetic acid-induced kraft lignin solubilization and its characterization for selective production of macromolecular biopolymers. International Journal of Biological Macromolecules, 161, 1240–1246. https://doi.org/10.1016/j.ijbiomac.2020.06.041
Pereira, J., Glória Gomes, M., Moret Rodrigues, A., & Almeida, M. (2019). Thermal, luminous and energy performance of solar control films in single-glazed windows: Use of energy performance criteria to support decision making. Energy and Buildings, 198, 431-443. https://doi.org/10.1016/j.enbuild.2019.06.003
Pereira, J., Teixeira, H., Gomes, M. da G., & Moret Rodrigues, A. (2022). Performance of Solar Control Films on Building Glazing: A Literature Review. Applied Sciences, 12(12), 5923. https://doi.org/10.3390/app12125923
Qiu, X., Yu, J., Yang, D., Wang, J., Mo, W., & Qian, Y. (2018). Whitening Sulfonated Alkali Lignin via H 2 O 2 /UV Radiation and Its Application As Dye Dispersant. ACS Sustainable Chemistry & Engineering, 6(1), 1055-1060. https://doi.org/10.1021/acssuschemeng.7b03369
Rashidi, S., Esfahani, J. A., & Karimi, N. (2018). Porous materials in building energy technologies—A review of the applications, modelling and experiments. Renewable and Sustainable Energy Reviews, 91(September 2017), 229-247. https://doi.org/10.1016/j.rser.2018.03.092
Sanandiya, N. D., Vijay, Y., Dimopoulou, M., Dritsas, S., & Fernandez, J. G. (2018). Large-scale additive manufacturing with bioinspired cellulosic materials. Scientific Reports, 8(1), 8642. https://doi.org/10.1038/s41598-018-26985-2
Song, M., Niu, F., Mao, N., Hu, Y., & Deng, S. (2018). Review on building energy performance improvement using phase change materials. Energy and Buildings, 158, 776-793. https://doi.org/10.1016/j.enbuild.2017.10.066
Sun, J., Schütz, U., Tu, K., Koch, S. M., Roman, G., Stucki, S., Chen, F., Ding, Y., Yan, W., Wu, C., Stricker, L., Burgert, I., Wang, Z. L., Hegemann, D., & Panzarasa, G. (2022). Scalable and sustainable wood for efficient mechanical energy conversion in buildings via triboelectric effects. Nano Energy, 102, 107670. https://doi.org/10.1016/J.NANOEN.2022.107670
Sun, Y., Wilson, R., & Wu, Y. (2018). A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort. Applied Energy, 226(May), 713-729. https://doi.org/10.1016/j.apenergy.2018.05.094
Tällberg, R., Jelle, B. P., Loonen, R., Gao, T., & Hamdy, M. (2019). Comparison of the energy saving potential of adaptive and controllable smart windows: A state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies. Solar Energy Materials and Solar Cells, 200(June 2018), 109828. https://doi.org/10.1016/j.solmat.2019.02.041
Wang, J., Deng, Y., Qian, Y., Qiu, X., Ren, Y., & Yang, D. (2016). Reduction of lignin color via one-step UV irradiation. Green Chemistry, 18(3), 695-699. https://doi.org/10.1039/C5GC02180D
Wang, K., Liu, X., Dong, Y., Ling, Z., Cai, Y., Tian, D., Fang, Z., & Li, J. (2022). Editable shape-memory transparent wood based on epoxy-based dynamic covalent polymer with excellent optical and thermal management for smart building materials. Cellulose, 29(14), 7955-7972. https://doi.org/10.1007/S10570-022-04754-9/TABLES/1
Wang, K., Peng, H., Gu, Q., Zhang, X., Liu, X., Dong, Y., Cai, Y., Li, Y., & Li, J. (2023). Scalable, large-size, and flexible transparent bamboo. Chemical Engineering Journal, 451, 138349. https://doi.org/10.1016/J.CEJ.2022.138349
Wang, K., Zhang, T., Li, C., Xiao, X., Tang, Y., Fang, X., Peng, H., Liu, X., Dong, Y., Cai, Y., Tian, D., Li, Y., & Li, J. (2022). Shape-reconfigurable transparent wood based on solid-state plasticity of polythiourethane for smart building materials with tunable light guiding, energy saving, and fire alarm actuating functions. Composites Part B: Engineering, 246, 110260. https://doi.org/10.1016/J.COMPOSITESB.2022.110260
Wang, Y., Uetani, K., Liu, S., Zhang, X., Wang, Y., Lu, P., Wei, T., Fan, Z., Shen, J., Yu, H., Li, S., Zhang, Q., Li, Q., Fan, J., Yang, N., Wang, Q., Liu, Y., Cao, J., Li, J., & Chen, W. (2017). Multifunctional Bionanocomposite Foams with a Chitosan Matrix Reinforced by Nanofibrillated Cellulose. ChemNanoMat, 3(2), 98-108. https://doi.org/10.1002/cnma.201600266
Wang, Z., Wang, X., Cong, S., Geng, F., & Zhao, Z. (2020). Fusing electrochromic technology with other advanced technologies: A new roadmap for future development. Materials Science and Engineering: R: Reports, 140(2020), 100524. https://doi.org/10.1016/j.mser.2019.100524
Xia, Q., Chen, C., Li, T., He, S., Gao, J., Wang, X., & Hu, L. (2021). Solar-assisted fabrication of large-scale, patternable transparent wood. Science Advances, 7(5), 1-9. https://doi.org/10.1126/sciadv.abd7342
Xia, Q., Chen, C., Yao, Y., Li, J., He, S., Zhou, Y., Li, T., Pan, X., Yao, Y., & Hu, L. (2021). A strong, biodegradable and recyclable lignocellulosic bioplastic. Nature Sustainability, 4(7), 627-635. https://doi.org/10.1038/s41893-021-00702-w
Yang, X., Abe, K., Yano, H., & Wang, L. (2022). Multifunctional cellulosic materials prepared by a reactive DES based zero-waste system. Nano Letters, 22(15), 6128-6134. https://doi.org/10.1021/ACS.NANOLETT.2C01303/SUPPL_FILE/NL2C01303_SI_002.PDF
Zhang, Y., Wei, Y., Qian, Y., Zhang, M., Zhu, P., & Chen, G. (2020). Lignocellulose enabled highly transparent nanopaper with tunable ultraviolet-blocking performance and superior durability. ACS Sustainable Chemistry and Engineering, 8(46), 17033-17041. https://doi.org/10.1021/acssuschemeng.0c04145
Zhang, Y., Yang, S., Tang, H., Wan, S., Qin, W., Zeng, Q., Huang, J., Yu, G., Feng, Y., & Li, J. (2022). Depletion stabilization of emulsions based on bacterial cellulose/carboxymethyl chitosan complexes. Carbohydrate Polymers, 297(July), 119904. https://doi.org/10.1016/j.carbpol.2022.119904
Zhao, D., Zhu, Y., Cheng, W., Chen, W., Wu, Y., & Yu, H. (2021). Cellulose‐Based Flexible Functional Materials for Emerging Intelligent Electronics. Advanced Materials, 33(28), 2000619. https://doi.org/10.1002/adma.202000619