EXTINCTION FOR A FAST DIFFUSION EQUATION WITH MIXED BOUNDARY CONDITIONS WITH A NONLINEAR NONLOCAL SOURCE

Luu Le Khai Cuong1, , Bui Ngoc Huy, Le Tuan Khai
1 Ho Chi Minh City University of Education

Main Article Content

Abstract

In this article, the authors established conditions for the extinction of solutions, in finite time, of the fast diffusion equation , ,  a bounded domain with  with mixed boundary conditions  where is partition of  and  is an outward vector. More precisely speaking, it is shown that if , any solution with small initial data vanishes in finite time, and if  or  and , the maximal solution is positive in  for all , where and  is the unique positive solution of the elliptic problem

Article Details

References

Alikakos, N. D., & Evans, L. C. (1983). Continuity of the gradient for weak solutions of a degenerate parabolic equation. Journal de Mathématiques Pures et Appliquées, 62(3), 253-268.
Anderson, J. R., & Deng, K. (1997). Global existence for degenerate parabolic equations with a nonlocal forcing. Mathematical Methods in the Applied Sciences, 20, 1069-1087. https://doi.org/10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO;2-Y
Borelli, M., & Ughi, M. (1994). The fast diffusion equation with strong absorption: The instantaneous shrinking phenomenon. Rendiconti dell’Istituto di Matematica dell’Università di Trieste, 26, 109-140.
Budd, C., Dold, B., & Stuart, A. (1993). Blow up in a partial differential equation with conserved first integral. SIAM Journal on Applied Mathematics, 53(3), 718-742.
Chengyuan Qu, Xueli Bai, & Sining Zheng (2014). Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions. Journal of Mathematical Analysis and Applications, 412(1), 326-333.
Ferreira, R., & Vázquez, J. L. (2001). Extinction behavior for fast diffusion equations with absorption. Nonlinear Analysis: Theory, Methods & Applications, 43, 943-985.
Friedman, A., & Herrero, M. A. (1987). Extinction properties of semilinear heat equations with strong absorption. Journal of Mathematical Analysis and Applications, 124, 530-546.
Herrero, M. A., & Velázquez, J. J. L. (1992). Approaching an extinction point in one-dimensional semilinear heat equations with strong absorptions. Journal of Mathematical Analysis and Applications, 170, 353-381.
Hu, B., & Yin, H. (1995). Semilinear parabolic equations with prescribed energy. Rendiconti del Circolo Matematico di Palermo, 44, 479-505.
Kalashnikov, A. S. (1974). The nature of the propagation of perturbations in problems of non-linear heat conduction with absorption. USSR Computational Mathematics and Mathematical Physics, 14, 70-85.
Leoni, G. (1996). A very singular solution for the porous media equation ut = Δum − up when 0 < m < 1. Journal of Differential Equations, 132, 353-376.
Li, Y. X., & Wu, J. C. (2005). Extinction for fast diffusion equations with nonlinear sources. Electronic Journal of Differential Equations, 2005(145), 1-7.
Peletier, L. A., & Junning, Z. (1990). Large time behavior of solutions of the porous media equation with absorption: The fast diffusion case. Nonlinear Analysis: Theory, Methods & Applications, 14, 107-121.
Peletier, L. A., & Junning, Z. (1991). Source-type solutions of the porous media equation with absorption: The fast diffusion case. Nonlinear Analysis: Theory, Methods & Applications, 17, 991-1009.
Sabinina, E. S. (1962). On a class of nonlinear degenerate parabolic equations. Doklady Akademii Nauk SSSR, 143, 794-797.