TỔNG HỢP, NGHIÊN CỨU TÍNH CHẤT QUANG VÀ ĐIỆN CỦA VẬT LIỆU NANO PEROVSKITE HOLMIUM PHA TẠP COBALT

Nguyễn Anh Tiến 1, , Nguyễn Hoàng Huy2, Nguyễn Thị Thu Trang3, Lê Thị Việt Hoa4, Phùng Viết Đức5, Nguyễn Thúy An5, Nguyễn Tuấn Lợi5
1 Khoa Hoá học, trường Đại học Sư phạm Tp. Hồ Chí Minh
2 Trường Đại học Sư Phạm TP. Hồ Chí Minh
3 Trường Đại học Sư Phạm TP Hồ Chí Minh
4 Trường Đại học Sư phạm TP Hồ Chí Minh
5 Đại học Duy Tân, Đà Nẵng

Nội dung chính của bài viết

Tóm tắt

Trong nghiên cứu này, các hạt nano perovskite holmium pha tạp cobalt (HoFe1–xCoxO3 với x = 0; 0,1 và 0,2 tính theo lí thuyết) đã được tổng hợp thành công bằng phương pháp đồng kết tủa đơn giản. Các tinh thể nano đơn pha HoFe1–xCoxO3 tạo thành sau khi nung kết tủa khô ở 850 °C trong 1 giờ có kích thước khoảng 50–70 nm. Vật liệu nano trên cơ sở perovskite holmium pha tạp cobalt có độ hấp thụ ánh sáng lớn ở vùng tử ngoại và vùng khả kiến. Giá trị năng lượng vùng cấm của vật liệu giảm dần theo chiều tăng nồng độ cobalt pha tạp (Eg = 1,92–1,71 eV). Các điện cực HoFe1–xCoxO3 cho thấy sự phù hợp khi sử dụng làm vật liệu điện cực dương của pin lithium ion. Cụ thể, điện cực HoFe0.9Co0.1O3 thể hiện giá trị dung lượng sạc đạt 288,97 mAh·g–1 sau 70 chu kì, tương ứng với tỉ lệ giữ lại dung lượng 126,42% so với chu kì đầu tiên.

Chi tiết bài viết

Author Biography

Nghiên cứu sinh Nguyễn Hoàng Huy, Trường Đại học Sư Phạm TP. Hồ Chí Minh

Nghiên cứu sinh trường Đại học Sư Phạm TP. Hồ Chí Minh

Tài liệu tham khảo

Angadi, J. A., Manjunatha, K., Akyol, M., Ekicibil, A., Matteppanavả, S., Pavlenko, A. V., Kubrin, S. P. (2020). Temperature-dependent dielectric and magnetic properties of scandium-substituted HoFeO3 nanoparticles. Journal of Superconductivity and Novel Magnetism. https://doi.org/10.1007/s10948-020-05597-w
Baeissa, E. S. (2016). Environmental remediation of aqueous methyl orange dye solution via photocatalytic oxidation using Ag–GdFeO3 nanoparticles. Journal of Alloys and Compounds. http://dx.doi.org/10.1016/j.jallcom.2016.04.007
Feng, C., Ruan, S., Li, J., Zou, B., Luo, J., Chen, W., Dong, W., Wu, F. (2011). Ethanol sensing properties of LaCoxFe1−xO3 nanoparticles: effects of calcination temperature, Co-doping, and carbon nanotube-treatment. Sensors and Actuators B: Chemical. https://doi.org/10.1016/j.snb.2010.11.053
Habib, Z., Ikram, M., Sultan, K., Abida, Mir, S. A., Majid, K., Asokan, K. (2017). Electronic excitation-induced structural, optical, and magnetic properties of Ni–doped HoFeO3 thin films. Applied Physics A. https://doi.org/10.1007.s00339-017-1041-z
Housecroft, C.E.; Sharpe, A.G. Inorganic Chemistry, 2nd ed.; Pearson, Prentice Hall: Upper Saddle River, NJ, USA 2005; 950 p.
Kondrashkova, I. S., Martinson, K. D., Zakharova, N. V., Popkov, V. I. (2018). Synthesis of nanocrystalline HoFeO3 photocatalyst via heat treatment of products of glycine-nitrate combustion. Russian Journal of General Chemistry. https://doi.org/10.1134/S107036321812002
Li, C. L., Zheng, S. S., Barasa, G. O., Zhao, Y. F., Wang, L., Wang, C. L., Lu, Y., Qiu, Y., Cheng, J. B., Luo, Y.S. (2021). A comparative study on magnetic behaviors and magnetocaloric effect in heavy rare-earth antiferromagnetic orthoferrites RFeO3 (R = Dy, Ho and Er). Ceramics International. https://doi.org/10.1016/j.ceramint.2021.09.059
Martinson, K. D., Kondrashkova, I. S., Omarov, S. O., Sladkpvskiy, D. A., Kiselev, A. S., Kiseleva, T. Yu., Popkov, V. I. (2020). Magnetically recoverable catalyst based on porous nanocrystalline HoFeO3 for processes of n-hexane conversion. Advanced Powder Techonology. https://doi.org/10.1016/j.apt.2019.10.033
Nakhaei, M., Khoshnoud, D. S. (2021). Structural, magnetic, and electrical properties of RFeO3 (R = Dy, Ho, Yb & Lu) compounds. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-021-05992-6
Nguyen, A. T., Nguyen, T. S., Tomina, E. V., Le, T. T. T., Vu, T. N. A., Tran, D. T., Cam, T. S. (2024). Structural, magnetic, and optical properties of perovskite-like SmFeO3 nanoparticles obtained from the co-precipitation method. Materials Science and Technology. https://doi.org/10.1177/02670836241299702
Nguyen, A. T., Pham, L. T., Mittova, I. Ya., Mittova, V. O., Nguyen, T. T. L., Nguyen, H. V., Bui, X. V. (2021). Co-doped NdFeO3 nanoparticles: synthesis, optical and magnetic properties study. Nanomaterials. https://doi.org/10.3390/nano11040937
Nguyen, A. T., Nguyen, T. N., Mittova, V. O., Thieu, Q., Q. V., Mittova, I. Ya., Tran, V. M., Nguyen, T. M., Nguyen, D. Q., Kim, Il T., Nguyen, T. L. (2023). Tailored synthesis of NdMnxFe1-xO3 perovskite nanoparticles with oxygen-vancancy defects for lithium-ion battery anodes, Heliyon. https://doi.org/10.1016/j.heliyon.2023.e21782
Nguyen, A.T., Chau, H. D., Nguyen, T. T. L., Mittova, V. O., Do, T. H., Mittova, I. Ya. (2018). Structural and magnetic properties of YFe1–xCoxO3 (0.1 ≤ x ≤ 0.5) perovskite nanomaterials synthesized by co-precipitation method. Nanosystems: Physics, Chemistry, Mathematics. https://doi.org/10.17586/2220-8054-2018-9-3-424-429
Pena, P., Fierro, J. (2001). Chemical structures and performance of perovskite oxide. Chemical Reviews. https://doi.org/10.1021/cr980129f
Polat, O., Caglar, M., Coskun, F. M., Koscun, M., Caglar, Y., Turut, A. (2019). An experimental investigation: the impact of cobalt doping on optical properties of YbFeO3–δ thin film. Materials Research Bulletin. https://doi.org/10.1016/j.materresbull.2019.110567
Wang, Z., Shi, C., Li, P., Wang, W., Xiao, W., Sun, T., Zhang, J. (2023). Optical and photocatalytic properties of cobalt-doped LuFeO3 powders prepared by oxalic acid assistance. Molecules. https://doi.org/10.3390/malecules28155730
Wang, M., Wang, T. (2019). Structural, magnetic and optical properties of Gd and Co co-doped YFeO3 nanopowders. Materials. https://doi.org/10.3390/ma12152423
Warshi, M. K., Mishra, V., Sagdeo, A., Mishra, V., Kumar, R., Sagdeo, P. R. (2018). Structural, optical and electronic properties of RFeO3. Ceramics International. https://doi.org/10.1016/j.ceramint.2018.02.023
Samvanshi, A., Husain, S., Khan, W. (2019). Investigation of structure and physical properties of cobalt doped nanocrystalline neodymium orthoferrite. Journal of Alloys Compounds. https://doi.org/10.1016/j.jallcom.2018.11.095
Song, Y., Zhang, Y., Ma, M., Ren, J., Liu, C., Tan, J. (2020). Visiblle light-assisted formaldehyde sensor based on HoFeO3 nanoparticles with sub-ppm detection limit. Ceramics International. https://doi.org/10.1016/j.ceramint.2020.03.191
Subramanian, Y., Ramasamy, V., Karthukeyan, R. J., Srinivasan, G. R., Arulmozhi, D., Gubendiran, R. K., Sriramalu, M. (2019). Investigation on the enhanced dye degradation activity of heterogeneous BiFeO3–GdFeO3 nanocomposite photocatalyst. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01831
Tan, P., Liu, M., Shao, Z., Ni, M. (2017). Recent advances in perovskite oxides as electrode materials for nonaqueous lithium-oxygen batteries. Advanced Energy Materials. https://doi.org/10.1002/aenm.201602674
Tang, P., Hu, Y., Lin, T., Jiang, Z., Tang, C. (2014) Preparation of nanocrystalline GdFeO3 by microwave method and its visible–light photocatalytic activity. Integrated Ferroelectrics. https://doi.org/10.1080/10584587.2014.902720
Tran, D. T., Nguyen, H. C. H., Le, T. T. T., Nguyen, A. T. (2024). Effect of annealing temperature and precipitation agent on the structure, optical and magnetic characteristics of dysprosium orthoferrite nanoparticles. Materials Today Commnunications. https://doi.org/10.1016/j.mtcomm.2024.109733
An, S. J., Li, J., Daniel, C., Mohanty, D., Nagpure, S., Wood III, D. L. (2016). The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon. https://doi.org/10.1016/j.carbon.2016.04.008
Wu, B., Chen, C., Danilov, D. L., Jiang, M., Raijmakers, L. H., Eichel, R. d.-A., Notten, P. H. L. (2022). Influence of the SEI formation on the stability and lithium diffusion in Si electrodes. ACS Omega. https://doi.org/10.1021/acsomega.2c04415.