TÍNH TOÁN HỆ SỐ HIỆU CHỈNH TỰ HẤP THỤ SỬ DỤNG MÔ PHỎNG MONTE CARLO VÀ MẠNG NƠ-RON NHÂN TẠO
Nội dung chính của bài viết
Tóm tắt
Nghiên cứu này đề xuất sử dụng mạng nơ-ron nhân tạo (ANN) để xác định hệ số hiệu chỉnh tự hấp thụ của vật liệu trong phép đo gamma mẫu môi trường. Phương pháp này tính đến đặc tính như số bậc nguyên tử, mật độ khối và năng lượng photon. Mô hình ANN đã được đào tạo và kiểm tra trên tập dữ liệu bao gồm 2575 điểm dữ liệu. Kết quả dự đoán hệ số hiệu chỉnh tự hấp thụ bằng mô hình ANN có độ chính xác cao với R2 trung bình là 0,88 (0,54 ≤ R2 ≤ 0,97), RMSE trung bình là 0,13 (0,07 ≤ RMSE ≤ 0,27) và MAE trung bình là 0,10 (0,05 ≤ MAE ≤ 0,21). Ngoài ra, độ sai biệt tương đối nhỏ hơn 12% chứng tỏ kết quả dự đoán bởi ANN cho 42 giá trị hệ số hiệu chỉnh tự hấp thụ tại năng lượng 40, 50, 60 keV có sự phù hợp tốt với kết quả tính toán bởi mô phỏng MCNP6. Phương pháp này là một công cụ hiệu quả và đáng tin cậy, giúp giảm thời gian tính toán và tiết kiệm chi phí trong các phép đo mẫu môi trường.
Từ khóa
ANN, hệ phổ kế gamma, MCNP, hệ số tự hấp thụ, XCOM
Chi tiết bài viết
Tài liệu tham khảo
Arun Kumar, S., Shashikumar, S. K., Ambika, M. R., Karthik Kumar, M. B., Nagaiah, N., & Khandaker, M. U. (2023). Photon attenuation computational software tools - A comparative study. Physics Open, 17, 100175. https://doi.org/https://doi.org/10.1016/j.physo.2023.100175
Barba-Lobo, A., Mosqueda, F., & Bolívar, J. P. (2021). A general function for determining mass attenuation coefficients to correct self-absorption effects in samples measured by gamma spectrometry. Radiation Physics and Chemistry, 179, Article 109247. https://www.sciencedirect.com/science/article/pii/S0969806X20313293
Benhadjira, A., Sayyed, M. I., Bentouila, O., & Aiadi, K. E. (2024). Artificial neural network approach for calculating mass attenuation coefficient of different glass systems. Nuclear Engineering and Technology, 56(1), 100-105. https://doi.org/https://doi.org/10.1016/j.net.2023.09.013
Bilici, S., Kamislioglu, M., & Altunsoy Guclu, E. E. (2023). A Monte Carlo simulation study on the evaluation of radiation protection properties of spectacle lens materials. Eur Phys J Plus, 138(1), Article 80. https://doi.org/https://link.springer.com/article/10.1140/epjp/s13360-022-03579-6
Bilmez, B., Toker, O., Alp, S., Öz, E., & İçelli, O. (2022). A comparative study on applicability and efficiency of machine learning algorithms for modeling gamma-ray shielding behaviors. Nuclear Engineering and Technology, 54(1), 310-317. https://doi.org/https://doi.org/10.1016/j.net.2021.07.031
Debertin, K., & Helmer, R. G. (1988). Gamma- and X-ray spectrometry with semiconductor detectors. North-Holland. http://inis.iaea.org/search/search.aspx?orig_q=RN:20046286
Eisenbud, M., & Gesell, T. (1997). Environmental radioactivity from natural, industrial, and military sources (4th ed.). http://inis.iaea.org/search/search.aspx?orig_q=RN:21013965
El-Khayatt, A. M. (2011). NXcom – A program for calculating attenuation coefficients of fast neutrons and gamma-rays. Annals of Nuclear Energy, 38(1), 128-132. https://doi.org/https://doi.org/10.1016/j.anucene.2010.08.003
Elmahroug, Y., Tellili, B., Souga, C., & Manai, K. (2015). ParShield: A computer program for calculating attenuation parameters of the gamma rays and the fast neutrons. Annals of Nuclear Energy, 76, 94-99. https://doi.org/https://doi.org/10.1016/j.anucene.2014.09.044
Eyecioğlu, Ö., El-Khayatt, A. M., Karabul, Y., Çağlar, M., Toker, O., & İçelli, O. (2019). BXCOM: a software for computation of radiation sensing. Radiation Effects and Defects in Solids, 174(5-6), 506-518. https://doi.org/10.1080/10420150.2019.1606811
Gerward, L., Guilbert, N., Jensen, K. B., & Levring, H. (2004). WinXCom—a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry, 71(3), 653-654. https://doi.org/https://doi.org/10.1016/j.radphyschem.2004.04.040
Gilmore, R. G. (2008a). Gamma spectrometry of Naturally Occurring Radioactive Materials (NORM). In Practical Gamma‐Ray Spectrometry (pp. 315-328). https://doi.org/https://doi.org/10.1002/9780470861981.ch16
Gilmore, R. G. (2008b). Practical gamma-ray spectrometry (2nd ed.). John Wiley & Sons, Ltd.
Haykin, S. S. (2009). Neural Networks and Learning Machines. Pearson. https://books.google.com.vn/books?id=KCwWOAAACAAJ
Hila, F. C., Amorsolo, A. V., Javier-Hila, A. M. V., & Guillermo, N. R. D. (2020). A simple spreadsheet program for calculating mass attenuation coefficients and shielding parameters based on EPICS2017 and EPDL97 photoatomic libraries. Radiation Physics and Chemistry, 177, Article 109122. https://doi.org/https://doi.org/10.1016/j.radphyschem.2020.109122
Huy, N. Q., Binh, D. Q., An, V. X., Loan, T. T. H., & Can, N. T. (2013). Self-absorption correction in determining the 238U activity of soil samples via 63.3 keV gamma ray using MCNP5 code. Applied Radiation and Isotopes, 71(1), 11-20. https://doi.org/https://doi.org/10.1016/j.apradiso.2012.09.004
IAEA. (2003). Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation. https://www.iaea.org/publications/6789/extent-of-environmental-contamination-by-naturally-occurring-radioactive-material-norm-and-technological-options-for-mitigation
Iurian, A. R. (2017). Self-attenuation corrections for Pb-210 in gamma-ray spectrometry using well and coaxial HPGe detectors.
Keras. (2023). Keras 3. Retrieved 2020, April 01 from https://keras.io/getting_started/
L'Annunziata, M. F. (2012). Handbook of Radioactivity Analysis.
Loan, T. T. H., Ba, V. N., & Thien, B. N. (2022). Natural radioactivity level in fly ash samples and radiological hazard at the landfill area of the coal-fired power plant complex, Vietnam. Nuclear Engineering and Technology, 54(4), 1431-1438. https://doi.org/https://doi.org/10.1016/j.net.2021.10.019
Modarresi, S. M., & Masoudi, S. F. (2018). On the gamma spectrometry efficiency of reference materials and soil samples. Joural of Environmental Radioactivity, 183, 54-58. https://doi.org/https://doi.org/10.1016/j.jenvrad.2017.12.012
Mostajaboddavati, M., Hassanzadeh, S., Faghihian, H., Abdi, M. R., & Kamali, M. (2006). Efficiency calibration and measurement of self-absorption correction for environmental gamma-spectroscopy of soil samples using Marinelli beaker. Journal of Radioanalytical and Nuclear Chemistry, 268(3), 539-544. https://doi.org/https://link.springer.com/article/10.1007/s10967-006-0202-x
NIST. XCOM: Photon cross sections database. Retrieved 2020, April 01 from https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
Pelowitz, P. (2013). MCNP6TM User's manual, Version 1.0. Los Alamos National Laboratory report LA-CP-13-00634.
Richland. (2021). Compendium of Material Composition Data for Radiation Transport Modeling. In Rev2. WA: Pacific Northwest National Laboratory: Detwiler R.S., R.J. McConn, T.F. Grimes, S.A. Upton, and E.J. Engel.
Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., & Kurudirek, M. (2020). Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, Article 108496. https://doi.org/https://doi.org/10.1016/j.radphyschem.2019.108496
Salgado, W. L., Dam, R. S. d. F., Teixeira, T. P., Conti, C. C., & Salgado, C. M. (2020). Application of artificial intelligence in scale thickness prediction on offshore petroleum using a gamma-ray densitometer. Radiation Physics and Chemistry, 168, Article 108549. https://doi.org/https://doi.org/10.1016/j.radphyschem.2019.108549
Sima, O., Ott, A. D. V. O., Dias, M. S., Dryak, P., Ferreux, L., Gurau, D., Hurtado, S., Jodlowski, P., Karfopoulos, K., Koskinas, M. F., Laubenstein, M., Lee, Y. K., Lépy M. C., Luca, A., Menezes, M.O., Moreira, D.S., Nikolič, J., Peyres, V., Saganowski, P., Savva, M. I.,.…Yucel, H. (2020). Consistency test of coincidence-summing calculation methods for extended sources. Applied Radiation and Isotopes, 155(108921), Article 108921. https://doi.org/https://doi.org/10.1016/j.apradiso.2019.108921
Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. J. J. M. L. R. (2014). Dropout: a simple way to prevent neural networks from overfitting. 15, 1929-1958.
Taylor, M. L., Smith, R. L., Dossing, F., & Franich, R. D. (2012). Robust calculation of effective atomic numbers: The Auto-Zeff software. Medical Physics, 39(4), 1769-1778. https://doi.org/https://doi.org/10.1118/1.3689810
Thanh, T. T., Ferreux, L., Lépy, M. C., & Tao, C. V. (2010). Determination activity of radionuclides in marine sediment by gamma spectrometer with anti cosmic shielding. Joural of Environmental Radioactivity, 101(9), 780-783. https://doi.org/https://doi.org/10.1016/j.jenvrad.2010.05.003
Thanh, T. T., Vuong, L. Q., Ho, P. L., Chuong, H. D., Nguyen, V. H., & Tao, C. V. (2018). Validation of an advanced analytical procedure applied to the measurement of environmental radioactivity. Joural of Environmental Radioactivity, 184-185, 109-113. https://doi.org/https://doi.org/10.1016/j.jenvrad.2017.12.020
Vargas, M. J., Timón, A. F., Díaz, N. C., & Sánchez, D. P. (2002). Monte Carlo simulation of the self-absorption corrections for natural samples in gamma-ray spectrometry. Applied Radiation and Isotopes, 57(6), 893-898. https://doi.org/https://doi.org/10.1016/S0969-8043(02)00220-8
Vuong, L. Q., Thanh, T. T., Ho, P. L., Hao, L. C., & Tao, C. V. (2023). Simultaneous correction of the coincidence summing and self-absorption for radioactivity measurement in solid samples by MCNP-CP code. Journal of Radioanalytical and Nuclear Chemistry, 332(2), 423-434. https://doi.org/https://link.springer.com/article/10.1007/s10967-023-08773-z
Yücel, H., Zümrüt, S., Narttürk, R. B., & Gedik, G. (2019). Efficiency calibration of a coaxial HPGe detector-Marinelli beaker geometry using an 152Eu source prepared in epoxy matrix and its validation by efficiency transfer method. Nuclear Engineering and Technology, 51(2), 526-532. https://doi.org/https://doi.org/10.1016/j.net.2018.09.024