SYNTHESIS OF NOVEL FLUORESCENT CONJUGATED POLYMERS BASED ON PHENOXAZINE DERIVATIVES AND 9,9-DIOCTYL-9H-FLUORENE
Main Article Content
Abstract
In this research, the new fluorescent conjugated polymers based on 10-(Perylene-3-yl-10H-Phenoxazine (PyP) and 9,9-dioctyl-9h-fluorene (PF) have been synthesized via direct arylation polymerization using Pd(OAc)2, PivOH and PCy3.HBF4 as catalyst system. The monomer based on phenothiazine has been synthesized via C-N coupling to obtain the 4-(10H-phenothiazine-10-yl)-N,N-diphenylaniline (PyP). The synthesized novel conjugated polymers based on PyP and PF have been characterized via 1H NMR, GPC, FTIR, DSC, XRD, PL, and UV-Vis spectrum. The obtained conjugated polymers exhibited a narrow bandgap of 2.85 eV and polymer exhibited the fluorescent emission at 350 nm. Based on the optical properties of PFPyP polymer, PFPyP can be applied for organic solar cell and fluorescent chemosensor devices.
Keywords
conjugated polymers, Direct arylation polymerization, organic solar cells
Article Details
References
Feng, L., Li, H., Qu, Y., & Lü, C. (2012). Detection of TNT based on conjugated polymer encapsulated in mesoporous silica nanoparticles through FRET. Chemical Communications, 48(38), 4633-4635. doi: 10.1039/C2CC16115J
Furton, K. G., & Myers, L. J. (2001). The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta, 54(3), 487-500. doi: 10.1016/S0039-9140(00)00546-4
Germain, M. E., & Knapp, M. J. (2009). Optical explosives detection: from color changes to fluorescence turn-on. Chemical Society Reviews, 38(9), 2543-2555. doi: 10.1039/B809631G
Griffin, T. M., Popkie Jr, N., Eagan, M. A., McAtee, R. F., Vrazel, D., & McKinly, J. (2005, May). Instrument response measurements of ion mobility spectrometers in situ: Maintaining optimal system performance of fielded systems. In Chemical and Biological Sensing VI (Vol. 5795, pp. 54-64). International Society for Optics and Photonics. doi: 10.3390/s150612891
Håkansson, K., Coorey, R. V., Zubarev, R. A., Talrose, V. L., & Håkansson, P. (2000). Low‐mass ions observed in plasma desorption mass spectrometry of high explosives. Journal of mass spectrometry, 35(3), 337-346. doi: 10.1002/(SICI)1096-9888(200003)35:3<337::AID-JMS940>3.0.CO;2-7
Hallowell, S. F. (2001). Screening people for illicit substances: a survey of current portal technology. Talanta, 54(3), 447-458. doi: 10.1016/s0039-9140(00)00543-9
Hill, H. H., & Simpson, G. (1997). Capabilities and limitations of ion mobility spectrometry for field screening applications. Field Analytical Chemistry & Technology, 1(3), 119-134.
doi: 10.1002/(SICI)1520-6521(1997)1:3<119::AID-FACT2>3.0.CO;2-S
Rochat, S., & Swager, T. M. (2013). Conjugated amplifying polymers for optical sensing applications. ACS applied materials & interfaces, 5(11), 4488-4502. doi: 10.1021/am400939w
Salinas, Y., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2012). Optical chemosensors and reagents to detect explosives. Chemical Society Reviews, 41(3), 1261-1296. doi: 10.1039/C1CS15173H
Sun, X., Wang, Y., & Lei, Y. (2015). Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews, 44(22), 8019-8061. doi: 10.1039/C5CS00496A
Swager, T. M. (1998). The molecular wire approach to sensory signal amplification. Accounts of Chemical Research, 31(5), 201-207. doi: 10.1021/ar9600502