THE EFFECTS OF LIGHT FROM LIGHT EMITTING DIODE ON THE GROWTH AND ASTAXANTHIN ACCUMULATION OF HAEMATOCOCCUS PLUVIALIS CULTIVATED IN THE ANGLED TWIN-LAYER POROUS SUBSTRATE PHOTOBIOREACTOR
Main Article Content
Abstract
Haematococcus pluvialis is now cultured to obtain natural astaxanthin by suspended or immobilised cultivation. In photoautotrophic cultivation, the luminaires have a great influence on the growth and astaxanthin accumulation of the algal cells. In this study, a small-scale angled twin-layer porous substrate photobioreactor was used to grow H. pluvialis with illumination from red LEDs or blue LEDs or a combination of red and blue LEDs simultaneously. Different light/dark cycles of red and blue LEDs were applied and selected based on the algal growth and accumulation of astaxanthin. The combination of red and blue LED lights at 300 µmol photons.m-2.s-1 has resulted in the highest dry biomass productivity and astaxanthin accumulation (1.3 % in the dry biomass). The microalgal dry biomass reached 111.6 g.m-2 after only 10 days, with a 24/0 hours light/dark cycle. The use of monochromatic light from LEDs showed the energy efficiency and applicability of immobilized algae culture in larger-scale twin-layer porous substrate photobioreactors.
Keywords
Astaxanthin, Haematococcus pluvialis, Light emitting diode, Porous substrate photobioreactor
Article Details
References
Benstein, R. M., Cebi, Z., Podola, B., & Melkonian, M. (2014). Immobilized growth of the peridinin-producing marine dinoflagellate Symbiodinium in a simple biofilm photobioreactor. Mar Biotechnol (NY), 16(6), 621-628. doi:10.1007/s10126-014-9581-0
Do, T. T., Ong, B. N., Nguyen Tran, M. L., Nguyen, D., Melkonian, M., & Tran, H. D. (2019). Biomass and Astaxanthin Productivities of Haematococcus pluvialis in an Angled Twin-Layer Porous Substrate Photobioreactor: Effect of Inoculum Density and Storage Time. Biology (Basel), 8(3). doi:10.3390/biology8030068
Dominguez-Bocanegra, A. R., Ponce-Noyola, T., & Torres-Munoz, J. A. (2007). Astaxanthin production by Phaffia rhodozyma and Haematococcus pluvialis: a comparative study. Appl Microbiol Biotechnol, 75(4), 783-791. doi:10.1007/s00253-007-0889-9
Jou, J. H., Lin, C. C., Li, T. H., Li, C. J., Peng, S. H., Yang, F. C., . . . Hsu, B. D. (2015). Plant Growth Absorption Spectrum Mimicking Light Sources. Materials (Basel), 8(8), 5265-5275. doi:10.3390/ma8085240
Kang, C. D., An, J. Y., Park, T. H., & Sim, S. J. (2006). Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochemical Engineering Journal, 31(3), 234-238. doi:https://doi.org/10.1016/j.bej.2006.08.002
Katsuda, T., Lababpour, A., Shimahara, K., & Katoh, S. (2004). Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme and Microbial Technology, 35(1), 81-86. doi:https://doi.org/10.1016/j.enzmictec.2004.03.016
Katsuda, T., Shimahara, K., Shiraishi, H., Yamagami, K., Ranjbar, R., & Katoh, S. (2006). Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. J Biosci Bioeng, 102(5), 442-446. doi:10.1263/jbb.102.442
Katsuda, T., Shiraishi, H., Ishizu, N., Ranjbar, R., & Katoh, S. (2008). Effect of light intensity and frequency of flashing light from blue light emitting diodes on astaxanthin production by Haematococcus pluvialis. J Biosci Bioeng, 105(3), 216-220. doi:10.1263/jbb.105.216
Kiperstok, A. C. (2016). Optimizing immobilized cultivation of Haematococcus pluvialis for astaxanthin production. (PhD PhD thesis), Universität zu Köln., Cologne. Retrieved from https://kups.ub.uni-koeln.de/6728/
Kiperstok, A. C., Sebestyén, P., Podola, B., & Melkonian, M. (2017). Biofilm cultivation of Haematococcus pluvialis enables a highly productive one-phase process for astaxanthin production using high light intensities. Algal Research, 21, 213-222. doi:https://doi.org/10.1016/j.algal.2016.10.025
Lababpour, A., Hada, K., Shimahara, K., Katsuda, T., & Katoh, S. (2004). Effects of nutrient supply methods and illumination with blue light emitting diodes (LEDs) on astaxanthin production by Haematococcus pluvialis. J Biosci Bioeng, 98(6), 452-456. doi:10.1016/s1389-1723(05)00311-7
Lababpour, A., Shimahara, K., Hada, K., Kyoui, Y., Katsuda, T., & Katoh, S. (2005). Fed-batch culture under illumination with blue light emitting diodes (LEDs) for astaxanthin production by Haematococcus pluvialis. J Biosci Bioeng, 100(3), 339-342. doi:10.1263/jbb.100.339
Lee, K.-H., & Hong, C.-H. (2015). Effects of LED irradiation on the growth and Astaxanthin Production of Haematococcus lacustris. Biosciences Biotechnology Research Asia, 12, 1167-1173. doi:10.13005/bbra/1769
Li, T., Podola, B., Schultze, L. K. P., & Melkonian, M. (2019). Design scenario analysis for porous substrate photobioreactor assemblies. Journal of Applied Phycology, 31(3), 1623-1636. doi:10.1007/s10811-018-1700-2
Li, T., Strous, M., & Melkonian, M. (2017). Biofilm-based photobioreactors: their design and improving productivity through efficient supply of dissolved inorganic carbon. FEMS Microbiology Letters, 364(24). doi:10.1093/femsle/fnx218 %J FEMS Microbiology Letters
Lorenz, R. T., & Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18(4), 160-167. doi:https://doi.org/10.1016/S0167-7799(00)01433-5
Olaizola, M., & Huntley, M. (2003). Recent advances in commercial production of astaxanthin from microalgae (Vol. 9: Biomaterials and Bioprocessing): Science Publishers.
Podola, B., Li, T., & Melkonian, M. (2017). Porous Substrate Bioreactors: A Paradigm Shift in Microalgal Biotechnology? Trends Biotechnol, 35(2), 121-132. doi:10.1016/j.tibtech.2016.06.004
Schultze, L. K. P., Simon, M.-V., Li, T., Langenbach, D., Podola, B., & Melkonian, M. (2015). High light and carbon dioxide optimize surface productivity in a Twin-Layer biofilm photobioreactor. Algal Research, 8, 37-44. doi:https://doi.org/10.1016/j.algal.2015.01.007
Suh, I. S., Joo, H. N., & Lee, C. G. (2006). A novel double-layered photobioreactor for simultaneous Haematococcus pluvialis cell growth and astaxanthin accumulation.
J Biotechnol, 125(4), 540-546. doi:10.1016/j.jbiotec.2006.03.027
Tran, H. D., Do, T. T., Le, T. L., Tran-Nguyen, M. L., Pham, C. H., & Melkonian, M. (2019). Cultivation of Haematococcus pluvialis for astaxanthin production on angled bench-scale and large-scale biofilm-based photobioreactors. Vietnam Journal of Science, Technology and Engineering, 61, 61-70.
Tsubokura, A., Yoneda, H., & Mizuta, H. (1999). Paracoccus carotinifaciens sp. nov., a new aerobic gram-negative astaxanthin-producing bacterium. Int J Syst Bacteriol, 49 Pt 1, 277-282. doi:10.1099/00207713-49-1-277
Wan, M., Hou, D., Li, Y., Fan, J., Huang, J., Liang, S., & Li, S. (2014). The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation. Bioresour Technol, 163, 26-32. doi:10.1016/j.biortech.2014.04.017
Xi, T., Kim, D. G., Roh, S. W., Choi, J. S., & Choi, Y. E. (2016). Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy. Appl Microbiol Biotechnol, 100(14), 6231-6238. doi:10.1007/s00253-016-7301-6
Zhang, W., Wang, J., Wang, J., & Liu, T. (2014). Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresour Technol, 158, 329-335. doi:10.1016/j.biortech.2014.02.044