STRONG CONVERGENCE OF INERTIAL HYBRID ITERATION FOR TWO ASYMPTOTICALLY G-NONEXPANSIVE MAPPINGS IN HILBERT SPACE WITH GRAPHS

Trung Hiếu Nguyễn , Phạm Cẩm Tú Cao

Main Article Content

Abstract

          In this paper, by combining the shrinking projection method with a modified inertial S-iteration process, we introduce a new inertial hybrid iteration for two asymptotically G-nonexpansive mappings and a new inertial hybrid iteration for two G-nonexpansive mappings in Hilbert spaces with graphs. We establish asufficient condition for the closedness and convexity of the set of fixed points of asymptotically G-nonexpansive mappings in Hilbert spaces with graphs. We then prove a strong convergence theorem for finding a common fixed point of two asymptotically G-nonexpansive mappings in Hilbert spaces with graphs. By this theorem, we obtain a strong convergence result for two G-nonexpansive mappings in Hilbert spaces with graphs. These results are generalizations and extensions of some convergence results in the literature, where the convexity of the set of edges of a graph is replaced by coordinate-convexity. In addition, we provide a numerical example to illustrate the convergence of the proposed iteration processes.    

  

Alber, Y. I. (1996). Metric and generalized projection operators in Banach spaces: properties and applications, In: A. G. Kartosator (Eds.). Theory and applications of nonlinear operators of accretive and monotone type (15-50). New York, NY: Marcel Dekker.

Aleomraninejad, S. M. A., Rezapour S., & Shahzad, N. (2012). Some fixed point results on a metric space with a graph. Topol. Appl., 159(3), 659-663.

Bauschke, H. H., & Combettes, P. L. (2011). Convex analysis and monotone operator theory in Hilbert spaces. New York, NY: Springer.

Cholamjiak, W., Yambangwai, D., Dutta, H., & Hammad, H. A. (2019). A modified shrinking projection methods for numerical reckoning fixed points of G-nonexpensive mappings in Hilbert spaces with graphs. Miskolc Math. Notes, 20(2), 941-956.

Dong, Q. L., Yuan, H. B., Cho, Y. J., & Rassias, T. M. (2018). Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett, 12(1), 87-102. 

Nguyen, V. D., & Nguyen, T. H. (2020). Convergence of a new three-step iteration process to common fixed points of three G-nonexpansive mappings in Banach spaces with directed graphs. Rev. R. Acad. Cienc. Exactas Fi’s.Nat. Ser. A Mat. RACSAM., 114(140), 1-24.

Mainge, P. E. (2008). Convergence theorems for inertial KM-type algorithms. J. Comput Appl. Math., 219, 223-236.

Martinez-Yanes, C., & Xu, H. K. (2006). Strong convergence of the CQ method for fixed point iteration processes. Nolinear Anal., 64, 2400-2411.

Phon-on, A., Makaje, N., Sama-Ae, A., & Khongraphan, K. (2019). An inertial S-iteration process. Fixed Point Theory Appl., 4, 1-14.

Sangago, M. G., Hunde, T. W., & Hailu, H. Z. (2018). Demiclodeness and fixed points of G-asymptotically nonexpansive mapping in Banach spaces with graph. Adv. Fixed Point Theory, 3, 313-340.

Tiammee, J., Kaewkhao, A., & Suantai, S. (2015). On Browder’s convergence theorem and Halpern interation process for G-nonexpansive mappings in Hilbert spaces endowed with graphs. Fixed Point Theory Appl., 187, 1-12.

Tripak, O. (2016). Common fixed points of G-nonexpansive mappings on Banach spaces with a graph. Fixed Point Theory Appl., 87, 1-8.

Wattanateweekul, M. (2018). Approximating common fixed points for two G-asymptotically nonexpansive mappings with directed graphs. Thai J. Math., 16(3), 817-830.

Wattanateweekul, R. (2019). Convergence theorems of the modified SP-iteration for G-asymptotically nonexpansive mappings with directed graphs. Thai J. Math., 17(3), 805-820.

Article Details

References

Alber, Y. I. (1996). Metric and generalized projection operators in Banach spaces: properties and applications, In: A. G. Kartosator (Eds.). Theory and applications of nonlinear operators of accretive and monotone type (15-50). New York, NY: Marcel Dekker.
Aleomraninejad, S. M. A., Rezapour S., & Shahzad, N. (2012). Some fixed point results on a metric space with a graph. Topol. Appl., 159(3), 659-663.
Bauschke, H. H., & Combettes, P. L. (2011). Convex analysis and monotone operator theory in Hilbert spaces. New York, NY: Springer.
Cholamjiak, W., Yambangwai, D., Dutta, H., & Hammad, H. A. (2019). A modified shrinking projection methods for numerical reckoning fixed points of G-nonexpensive mappings in Hilbert spaces with graphs. Miskolc Math. Notes, 20(2), 941-956.
Dong, Q. L., Yuan, H. B., Cho, Y. J., & Rassias, T. M. (2018). Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett, 12(1), 87-102.
Nguyen, V. D., & Nguyen, T. H. (2020). Convergence of a new three-step iteration process to common fixed points of three G-nonexpansive mappings in Banach spaces with directed graphs. Rev. R. Acad. Cienc. Exactas Fi’s.Nat. Ser. A Mat. RACSAM., 114(140), 1-24.
Mainge, P. E. (2008). Convergence theorems for inertial KM-type algorithms. J. Comput Appl. Math., 219, 223-236.
Martinez-Yanes, C., & Xu, H. K. (2006). Strong convergence of the CQ method for fixed point iteration processes. Nolinear Anal., 64, 2400-2411.
Phon-on, A., Makaje, N., Sama-Ae, A., & Khongraphan, K. (2019). An inertial S-iteration process. Fixed Point Theory Appl., 4, 1-14.
Sangago, M. G., Hunde, T. W., & Hailu, H. Z. (2018). Demiclodeness and fixed points of G-asymptotically nonexpansive mapping in Banach spaces with graph. Adv. Fixed Point Theory, 3, 313-340.
Tiammee, J., Kaewkhao, A., & Suantai, S. (2015). On Browder’s convergence theorem and Halpern interation process for G-nonexpansive mappings in Hilbert spaces endowed with graphs. Fixed Point Theory Appl., 187, 1-12.
Tripak, O. (2016). Common fixed points of G-nonexpansive mappings on Banach spaces with a graph. Fixed Point Theory Appl., 87, 1-8.
Wattanateweekul, M. (2018). Approximating common fixed points for two G-asymptotically nonexpansive mappings with directed graphs. Thai J. Math., 16(3), 817-830.
Wattanateweekul, R. (2019). Convergence theorems of the modified SP-iteration for G-asymptotically nonexpansive mappings with directed graphs. Thai J. Math., 17(3), 805-820.