SYNTHESIS, CHARACTERIZATION OF Cu2[Fe(CN)6] NANOPARTICLE AND APPLY OF ADSORPTION ION CESIUM (Cs+)
Main Article Content
Abstract
In this investigation, the sorptive removal of Cesium ions (Cs+) from CsCl aqueous using Cu2[Fe(CN)6] nanoparticles was studied. Synthesis of Cu2[Fe(CN)6] nanoparticle was carried out; using X-ray diffraction (XRD) analyzed the characterized of Cu2[Fe(CN)6]; and application of the total reflection X-ray fluorescence (TXRF) technique detected absorbent capacity. Some characteristics of Cu2[Fe(CN)6] as: Miller indices (hkl), the spacing between the atomic planes (d), the lattice parameter (a) and volume of the unit cell (V) were calculation clearly. All experiments in our work were studied as pH = 7 level and room temperature and change solute concentration.The Freundlich and the Langmuir isotherm model are applied to determine the heterogeneity factor (1/n) and the maximum adsorption capacity (qmax).
Keywords
Synthesis, Cu2[Fe(CN)6], X-ray diffraction (XRD), Cesium ion (Cs ).
Article Details
References
Borai, E. H., Harjula, R., Malinen, L., & Paajanen, A., (2009). Efficient removal of cesium form low-level radioactive liquid waste using natural and impregnated zeolite min¬erals. J. Hazard. Mater, (172), 416-422.
Dang, V. B. H., Doan, H. D., Dang-Vu, T., & Lohi, A., (2009). Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Biores. Technol, (100), 211-219.
Eisenbud, M. (1997). Environmental Radioactivity, from Natural, Industrial, and Military Sources. San Francisco: Morgan Kaufman.
Freundlich, H., (1939). Adsorption in solution. J. Am. Chem. Soc., (61), 2-28.
Glasstone, S., & A. Sesonske (1994). Nuclear Reactor Engineering. New York: Chapman & Hall.
Langmuir, I., 1918. The adsorption of gases on plane surface of glass, mica, and platinum. J. Amer. Chem. Soc., 40, 1361-1403.
Pearson, W. B., (1972). The Crystal Chemistry and Physics of Metals and Alloys. John Wiley & Sons, Inc.
Sheha, R. R., (2012). Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium from radioactive waste solutions. J. Colloid Interface Sci., 388, 21-30.
Tan, G. Q., Xiao, D., (2009). Adsorption of cadmium ion from aqueous solution by ground wheat stems. J. Hazard. Mater, 164, 1359-1363.
Walker, S, Hyde, R A, Piper, R B, & Roy, M W. 1992. An Overview of In Situ Waste Treatment Technologies. The Spectrum '92 Conference, Boise, Idaho.
Yang, D. J., Sarina, S., Zhu, H., Liu, H., Zheng, Z., Xie, M., Smith, S. V., & Komarneni S., (2011). Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew. Chem. Int. Edit., 50, 10594-10598.

Dang, V. B. H., Doan, H. D., Dang-Vu, T., & Lohi, A., (2009). Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Biores. Technol, (100), 211-219.

Eisenbud, M. (1997). Environmental Radioactivity, from Natural, Industrial, and Military Sources. San Francisco: Morgan Kaufman.

Freundlich, H., (1939). Adsorption in solution. J. Am. Chem. Soc., (61), 2-28.

Glasstone, S., & A. Sesonske (1994). Nuclear Reactor Engineering. New York: Chapman & Hall.

Langmuir, I., 1918. The adsorption of gases on plane surface of glass, mica, and platinum. J. Amer. Chem. Soc., 40, 1361-1403.

Pearson, W. B., (1972). The Crystal Chemistry and Physics of Metals and Alloys. John Wiley & Sons, Inc.

Sheha, R. R., (2012). Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium from radioactive waste solutions. J. Colloid Interface Sci., 388, 21-30.

Tan, G. Q., Xiao, D., (2009). Adsorption of cadmium ion from aqueous solution by ground wheat stems. J. Hazard. Mater, 164, 1359-1363.

Walker, S, Hyde, R A, Piper, R B, & Roy, M W. 1992. An Overview of In Situ Waste Treatment Technologies. The Spectrum '92 Conference, Boise, Idaho.

Yang, D. J., Sarina, S., Zhu, H., Liu, H., Zheng, Z., Xie, M., Smith, S. V., & Komarneni S., (2011). Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angew. Chem. Int. Edit., 50, 10594-10598.
