SYNTHESIS OF AMPHIPHILIC HAIRY ROD DIBLOCK POLY(GLUTAMIC ACID)-B-POLY(BENZYL GLUTAMATE-R-OCTADECYL GLUTAMATE)

Thu Thuỷ Trương 1, Song Đức Anh Nguyễn 2, Thị Lệ Thu Nguyễn 3,
1 Faculty of Materials Technology - Ho Chi Minh City University of Technology - Vietnam National University (VNU-HCM)
2 National key laboratory of Polymer and Composite materials – Ho Chi Minh City University of Technology – Vietnam National University (VNU-HCM)
3 - National key laboratory of Polymer and Composite materials – Ho Chi Minh City University of Technology – Vietnam National University (VNU-HCM) - Faculty of Materials Technology - Ho Chi Minh City University of Technology - Vietnam National University (VNU-HCM)

Main Article Content

Abstract

 

Diblock copolypeptide poly(glutamic acid) -b-poly (benzyl glutamate-r-octadecyl glutamate) has a great potential for biological stabilization and optical orientation. This study reports on the synthesis and characterization of an amphiphilic diblock copolypeptide of poly(glutamic acid) and poly(benzyl glutamate-r-octadecyl glutamate) possessing the a-helical secondary structure. To obtain this copolypeptide, a precursor copolymer with an acid-labile protecting group for the carboxylic acid was prepared through glutamate-N-carboxy anhydride polymerization, followed by removal of the protecting group using a straightforward and highly efficient process. The precursor and the synthesized diblock copolymer were characterized by using nuclear magnetic resonance spectroscopy (NMR) and attenuated total reflection-Fourier transform infrared (ATR FT-IR). The α-helix conformation of poly (glutamic acid) -b-poly (benzyl glutamate-r-octadecyl glutamate) was identified by the characteristic α-helix amide I and amide II bands at 1651 cm-1 and 1547 cm-1 respectively, the thermal properties of this diblock copolypeptide shown on a result of TGA for observing thermally stable up to 215 oC.

 

Article Details

References

Ashiuchi, M., Nawa, C., Kamei, T., Song, J.-J., Hong, S.-P., Sung, M.-H., . . . Misono, H. (2001). Physiological and biochemical characteristics of poly γ-glutamate synthetase complex of Bacillus subtilis. European Journal of Biochemistry, 268(20), 5321-5328. doi:doi:10.1046/j.0014-2956.2001.02475.x
Balavoine, F., Schultz, P., Richard, C., Mallouh, V., Ebbesen, T. W., & Mioskowski, C. (1999). Angew. Chem. Int. Ed., 38, 1912.
Block, H. (1983). Poly(γ-Benzyl-L-Glutamate) and other Glutamic Acid Containing Polymers. New York: Gordon and Breach Publishers.
Cornille, F., Copier, J.-L., Senet, J.-P., & Robin, Y. (2002). Eur. Pat. Appl. 1201659.
Müller, M., Kessler, B., & Lunkwitz, K. (2003). J. Phys. Chem. B, 107, 8189.
Nguyen, L. T. T., Vorenkamp, E. J., Daumont, C. J. M., Brinke, G. T., & Schouten, A. J. (2010). Double-brush Langmuir–Blodgett monolayers of α-helical diblock copolypeptides. Polymer, 51(5), 1042-1055. doi:https://doi.org/10.1016/j.polymer.2010.01.014
Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49(12), 832-864. doi:10.1002/polb.22259
Vayaboury, W., Giani, O., Cottet, H., Deratani, A., & Schué, F. (2004). Living Polymerization of α-Amino Acid N-Carboxyanhydrides (NCA) upon Decreasing the Reaction Temperature. Macromolecular Rapid Communications, 25(13), 1221-1224. doi:doi:10.1002/marc.200400111
Wasserman, D., Garber, J. D., & Meigs, F. M. (1966). U. S. Patent 3.285.953.
Wilder, R., & Mobashery, S. (1992). The use of triphosgene in preparation of N-carboxy .alpha.-amino acid anhydrides. J. Org. Chem., 57, 2755-2756.