THE MORPHOLOGICAL, PHYSIOLOGICAL AND BIOCHEMICAL CHARACTERISTICS ARE IMPORTANT MARKERS FOR SELECTION OF FRESHWATER GREEN MICROALGAE WITH HIGH CAROTENOID AND LIPID CONTENTS
Main Article Content
Abstract
Green microalgae are photosynthetic microorganisms capable of producing essential organic substances to maintain life on Earth. The selection process for green microalgal strains capable of accumulating high carotenoids and lipid contents was carried out on biomass from water samples collected in Phu Quoc (PQ) island, Kien Giang province of Viet Nam, based on morphological, physiological and biochemical characteristics. As a result, four green microalgal strains, including PQ 6.1, PQ 6.2, PQ 3.1 (1), PQ 3.2 (2), were identified as high accumulators, whereas four other strains, PQ 1.4, PQ 1.2, PQ 6.1(1), were identified as non-accumulators. This is evident by the differences in cellular characteristics: when grown under nutrient-depleting and/or high-light intensity condition, high-accumulating strains have large cell size, yellow or orange coloration, low and stable growth but high carotenoid and lipid contents; whereas non-accumulators have small cell size, green color, high growth, but low carotenoid and lipid contents.
Keywords
carotenoid, Green microalgae, lipid
Article Details
References
Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine drugs, 17(5), 304.
Dixon, C., & Wilken, L. R. (2018). Green microalgae biomolecule separations and recovery. Bioresources and Bioprocessing, 5(1), 1-24.
Dong, S., Huang, Y., Zhang, R., Wang, S., & Liu, Y. (2014). Four different methods comparison for extraction of astaxanthin from green alga Haematococcus pluvialis. ScientificWorldJournal, 2014, 694305. doi:10.1155/2014/694305
Faraloni, C., & Torzillo, G. (2017). Synthesis of antioxidant carotenoids in microalgae in response to physiological stress. Carotenoids. IntechOpen, 143-157.
Goncalves, E. C., Koh, J., Zhu, N., Yoo, M. J., Chen, S., Matsuo, T., . . . Rathinasabapathi, B. (2016). Nitrogen starvation‐induced accumulation of triacylglycerol in the green algae: evidence for a role for ROC 40, a transcription factor involved in circadian rhythm. The Plant Journal, 85(6), 743-757.
Guillard, R. R., & Sieracki, M. S. (2005). Counting cells in cultures with the light microscope. Algal culturing techniques, 239-252.
Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54(4), 621-639.
Jaeyeon Park, Hae Jin Jeong, Eun Young Yoon, & Moon, S. J. (2016). Easy and rapid quantifcation of lipid contents of marine dinoflagellates using the sulpho-phospho-vanillin method. Algae, 31(4).
Lee, R. E. (2018). Phycology: Cambridge University Press.
Markou, G., & Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnology advances, 31(8), 1532-1542.
Martín-Juárez, J., Markou, G., Muylaert, K., Lorenzo-Hernando, A., & Bolado, S. (2017). Breakthroughs in bioalcohol production from microalgae: Solving the hurdles Microalgae-Based Biofuels and Bioproducts (pp. 183-207): Elsevier.
Minhas, A. K., Hodgson, P., Barrow, C. J., & Adholeya, A. (2016). A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in microbiology, 7, 546.
Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S., & Yang, J. W. (2014). Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour Technol, 155, 330-333. doi:10.1016/j.biortech.2013.12.077
Munir, N., Sharif, N., Naz, S., & Manzoor, F. (2013). Algae: a potent antioxidant source. Sky Journal of Microbiology Research, 1(3), 22-31.
Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 156, 146-154.
Sarada, R., Vidhyavathi, R., Usha, D., & Ravishankar, G. A. (2006). An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. J Agric Food Chem, 54(20), 7585-7588. doi:10.1021/jf060737t
Shaish, A., Ben-Amotz, A., & Avron, M. (1992). Biosynthesis of β-carotene in Dunaliella Methods in Enzymology (Vol. 213, pp. 439-444): Academic Press.
Solovchenko, A., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., & Merzlyak, M. (2008). Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. Journal of Applied Phycology, 20(3), 245-251.
Sun, X.-M., Ren, L.-J., Zhao, Q.-Y., Ji, X.-J., & Huang, H. (2018). Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnology for biofuels, 11(1), 272.
Talero, E., García-Mauriño, S., Ávila-Román, J., Rodríguez-Luna, A., Alcaide, A., & Motilva, V. (2015). Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Marine drugs, 13(10), 6152-6209.
Tran, D., Mai, T., Vo, T., Ward, A., Nguyen, H., & Hoang, X. (2014). Lipid Signal Can Be An Additional Marker For The Detection Of Dunaliella Salina. Wolfenia journal, 21(12),
216-233.