SYNTHESIS AND OPTICAL PROPERTIES OF NOVEL CONJUGATED POLYMER BASED ON THIACALIX[3]TRIAZINE AND 3-HEXYLTHIOPHENE

Trần Hà Nguyễn 1, , Thi Thanh Nhung Trương 2, Thành Dưỡng Lê 2, Kim Bảo Đoàn 2
1 Phòng Thí Nghiệm Trọng Điểm Quốc Gia Vật Liệu Polyme và Compozit, Đại Học Quốc Gia TP. Hồ Chí Minh
2 Phòng thí nghiệm Trọng điểm Quốc gia Vật liệu Polyme và Compozit – Đại học Quốc gia Tp.HCM, 268 Lý Thường Kiệt, Quận 10, Tp. Hồ Chí Minh

Main Article Content

Abstract

 

In this study, we synthesized the novel conjugated polymers based on thiacaliax[3]triazine and 3-hexylthiophene via C-H direct arylation polymerization. The chemical structure of obtained conjugated polymers has a donor – acceptor moieties including thiacaliax[3]triazine as acceptor units due to electron withdrawing properties of triazine and donor moieties such as 3-hexylthiophene. The structure of the resulted polymer was characterized via FTIR and 1H NMR spectrum. In addition, the molecular weight of the polymer was determined by GPC analysis. The optical properties of the polymer were investigated via UV-Vis and PL spectrometer. The novel conjugated polymers have been expected to have a narrow band-gap and redshift absorption and could be applied for organic solar cells (OSCs)

Article Details

Author Biographies

Trần Hà Nguyễn, Phòng Thí Nghiệm Trọng Điểm Quốc Gia Vật Liệu Polyme và Compozit, Đại Học Quốc Gia TP. Hồ Chí Minh

Giảng Viên

Thi Thanh Nhung Trương, Phòng thí nghiệm Trọng điểm Quốc gia Vật liệu Polyme và Compozit – Đại học Quốc gia Tp.HCM, 268 Lý Thường Kiệt, Quận 10, Tp. Hồ Chí Minh

Học Viên Cao Học

Thành Dưỡng Lê, Phòng thí nghiệm Trọng điểm Quốc gia Vật liệu Polyme và Compozit – Đại học Quốc gia Tp.HCM, 268 Lý Thường Kiệt, Quận 10, Tp. Hồ Chí Minh

Học Viên Cao Học

Kim Bảo Đoàn, Phòng thí nghiệm Trọng điểm Quốc gia Vật liệu Polyme và Compozit – Đại học Quốc gia Tp.HCM, 268 Lý Thường Kiệt, Quận 10, Tp. Hồ Chí Minh

Học Viên Cao Học

References

Arias, A. C., MacKenzie, J. D., McCulloch, I., Rivnay, J., & Salleo, A. (2010). Materials and applications for large area electronics: solution-based approaches. Chem Rev 110, 3-24. doi: 10.1021/cr900150b
Chen, C. F., Wang, H. X., Han, Y., & Ma, Y. X (2016). Triptycene-derived calixarenes, heteracalixarenes and analogues. In: Neri P, Sessler JL, Wang M-X (eds) Calixarenes and beyond. Springer International Publishing, Cham, 467-484. doi: 10.1007/978-3- 319-31867-7-18
Cheng, Y-J., Yang, S-H., & Hsu C-S (2009). Synthesis of conjugated polymers for organic solar cell applications. Chem Rev, 109, 5868-5923. doi: 10.1021/cr900182s
Choi, H., Ko, S. J., Kim, T., Morin, P. O., Walker, B., Lee, B. H., Leclerc, M., Kim, J. Y., & Heeger, A. J. (2015). Adv. Mater, 27, 3318-3324. doi: 10.1002/adma.201501132
Darjee, S. M., Bhatt, K., Kongor, A., Panchal, M. K., & Jain, V. K (2017). Thiacalix[4]arene functionalized gold nano-assembly for recognition of isoleucine in aqueous solution and its antioxidant study. Chem Phys Lett, 667, 137-145. doi: 10.1016/j.cplett.2016.11.048
Janssen, R. A. J., & Nelson, J. (2013) Factors limiting device efficiency in organic photovoltaics. Adv Mater, 25, 1847-1858. doi: 10.1002/adma.201202873
Jørgensen, M., Norrman, K., Gevorgyan, S. A., Tromholt, T., Andreasen, B., & Krebs, F. C. (2012). Stability of polymer solar cells. Adv Mater, 24, 580-612. doi: 10.1002/adma.201104187
Geng, Y., Cong, J., Tajima, K., Zeng, Q., & Zhou, E. (2014). Synthesis and properties of D–A copolymers based on dithienopyrrole and benzothiadiazole with various numbers of thienyl units as spacers. Poly. Chem., 5, 6797-6803. doi: 10.1039/C4PY00975D
Kim, H-J., Lee, Y. J., Hwang, S. S., Choi, D. H., Yang, H., & Baek, K-Y. (2011) Synthesis of multiarmed poly(3-hexyl thiophene) star polymer with microgel core by GRIMand ATRP methods. J Polym Sci A Polym Chem, 49, 4221-4226. doi: 10.1002/pola.24864
Lhoták, P. (2004). Chemistry of thiacalixarenes. Eur J Org Chem, 2004, 1675-1692. doi: 10.1002/ejoc.200300492
Li, Y. (2012) Molecular design of photovoltaicmaterials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res, 45, 723-733. doi: 10.1021/ar2002446
Liu, F., Zhang, Y., Wang, H., & Zhang, S. (2018). Novel Conjugated Polymers Prepared by Direct (Hetero) arylation: An Eco-Friendly Tool for Organic Electronics. Molecules, 23, 408. doi: 10.3390/molecules23020408
Ludwigs, S. (2014). P3HT revisited – from molecular scale to solar cell devices, vol 265. Springer, Berlin.
Morohashi, N., Narumi, F., Iki, N., Hattori, T., & Miyano, S. (2006). Thiacalixarenes. Chem Rev, 106, 5291-5316. doi: 10.1021/cr050565j
Nitti, A., Po, R., Bianchi, G., & Pasini, D. (2017). Direct Arylation Strategies in the Synthesis of π-Extended Monomers for Organic Polymeric Solar Cells. Molecules 22, 21. doi: 10.3390/molecules22010021
Su, Y-W., Lan, S-C., & Wei, K-H. (2012). Organic photovoltaics. Mater Today, 15, 554-562. doi: 10.1016/S1369-7021(13)70013-0
Van, R. W., Thomas, J., Terentyeva, T. G., Maes, W., & Dehaen, W. (2013). Selenacalix[3]triazines: anion versus proton association. Eur J Org Chem, 2085-2090. doi: 10.1002/ejoc.201201548
Yu, S., Liu, F., Yu, J., Zhang, S., Cabanetos, C., & Gao. (2017). Eco-friendly direct (hetero)-arylation polymerization: scope and limitation. J. Mater. Chem C., 5, 29-40. doi: 10.1039/C6TC04240F
Zhou, H., Yang, L., Stuart, A. C., Price, S. C., Liu, S., & You, W (2011). Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7 % Efficiency Angewandte Chemie International Edition, 50, 2995-2998. doi: 10.1002/anie.20100545
Zhou, H., Yang, L., & You, W. (2012). Rational design of high performance conjugated polymers for organic solar cells. Macromolecules, 45,607-632. doi: 10.1021/ma201648t