INVESTIGATE THE ADSORPTION OF CESIUM ION (Cs+) AND STRONTIUM ION (Sr2+) ON Zn2[Fe(CN)6] NANOPARTICLES

Đông Phương Trương , Vũ Trâm Anh Lê , Thị Đan Thy Kiều , Trần Thúy Hồng Nguyễn , Đình Trung Nguyễn

Main Article Content

Abstract

 

Low-cost, nanoscale zinc hexacyanoferrate (ZnHF), an effective adsorbent for cesium (Cs+) and strontium (Sr2+) removal, was prepared using the chemical co-precipitation method. The Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) spectra, and high-resolution transmission electron microscopy (HRTEM) images were performed to determine the morphologies of ZnHF. The Zn15[Fe(CN)6]12(2K).10H2O was the trigonal structure (space group p-3c1) in the range of 50-200 nm, the BET surface area 43.08 m2/g. The Cs+ and Sr2+ removal were dependent on pH; this material's maximum value of adsorption capacity (qmax) is achieved at a pH of 6. According to the Langmuir model qmax = 190.52 mg/g and 72.43 mg/g for Cs+ and Sr2+ respectively. The Langmuir model was conformable to describe the adsorption process of both Cs+ and Sr2+ ions by ZnHF. The low-cost easily synthesized nanoscale zinc hexacyanoferrate (ZnHF) material. This material becomes an attractive and promising adsorbent in treating Cs+ and Sr2+ ions of nuclear water.

 

Article Details

Author Biography

Đông Phương Trương,

Giám đốc trung tâm phân tích và kiểm định trường Đại học Đà Lạt

Tiến sĩ Hóa học môi trường

 

References

Abdollahi, T., Towfighi, J., & Rezaei-Vahidian, H. (2019). Sorption of cesium and strontium ions by natural zeolite and management of produced secondary waste. Environmental Technology & Innovation, 17, 100592. doi:10.1016/j.eti.2019.100592
Aguila, B., Banerjee, D., Nie, Z., Shin, Y., Ma, S., & Thallapally, P. K. (2016). Selective removal of cesium and strontium using porous frameworks from high-level nuclear waste. Chemical Communications, 52(35), 5940-5942. doi:10.1039/c6cc00843g
Ali, M. M. S., Sami, N. M., & El-Sayed, A. A. (2020). Removal of Cs+, Sr2+, and Co2+ by activated charcoal modified with Prussian blue nanoparticle (PBNP) from aqueous media: kinetics and equilibrium studies. Journal of Radioanalytical and Nuclear Chemistry, 324, 189-201. doi:10.1007/s10967-020-07067-y
Avery, S. V. (1996). Fate of caesium in the environment: Distribution between the abiotic and biotic components of aquatic and terrestrial ecosystems. Journal of Environmental Radioactivity, 30(2), 139-171. doi:10.1016/0265-931x(96)89276-9
Avila, M., Reguera, L., Rodríguez-Hernández, J., Balmaseda, J., & Reguera, E. (2008). Porous framework of T2[Fe(CN)6].xH2O with T=Co, Ni, Cu, Zn, and H2 storage. Journal of Solid State Chemistry, 181(11), 2899-2907. doi:10.1016/j.jssc.2008.07.030
Cabrera, W. E., Schrooten, I., De Broe, M. E., & D’Haese, P. C. (1999). Strontium and Bone. Journal of Bone and Mineral Research, 14 (5), 661-668. doi:10.1359/jbmr.1999.14.5.661
El-Kamash, A. M. (2008). Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. Journal of Hazardous Materials, 151(2-3), 432-445. doi:10.1016/j.jhazmat.2007.06.009
Faghihian, H., Iravani, M., Moayed, M., & Ghannadi-Maragheh, M. (2013). Preparation of a novel PAN–zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. Chemical Engineering Journal, 222,
41-48. doi:10.1016/j.cej.2013.02.035
Goyal, N., Gao, P., Wang, Z., Cheng, S., Ok, Y. S., Li, G., & Liu, L. (2020). Nanostructured chitosan/molecular sieve-4A an emergent material for the synergistic adsorption of radioactive major pollutants cesium and strontium. Journal of Hazardous Materials, 392, 122494. doi:10.1016/j.jhazmat.2020.122494
Haas, P. A. (1993). A Review of Information on Ferrocyanide Solids for Removal of Cesium from Solutions. Separation Science and Technology, 28(17-18), 2479-2506. doi:10.1080/01496399308017493
Jassal, V., & Shanker1, U. (2015). Synthesis, Characterization and Applications of Nano-structured Metal Hexacyanoferrates: A Review. Journal of Environmental Analytical Chemistry, 2(2), 1-14. doi:10.4172/2380-2391.1000128
Li, B., Liao, J., Wu, J., Zhang, D., Zhao, J., Yang, Y., … & Liu, N. (2008). Removal of radioactive cesium from solutions by zinc ferrocyanide. Nuclear Science and Techniques, 19(2),
88-92. doi:10.1016/s1001-8042(08)60029-9
Mark, L., Rex, P. (2003). Structure Determination by X-ray Crystallography (631). Springer US.
Nakamoto, K. (1986). Infrared and Raman Spectra of Inorganic and Coordination Compounds (484). Wiley.
Narang, J., Chauhan, N., & Pundir, C. S. (2013). Construction of triglyceride biosensor based on nickel oxide–chitosan/zinc oxide/zinc hexacyanoferrate film. International Journal of Biological Macromolecules, 60, 45-51. doi:10.1016/j.ijbiomac.2013.05.007
Petryna, A. (1995). Sarcophagus: Chernobyl in Historical Light. Cultural Anthropology, 10(2), 196-220. doi:10.1525/can.1995.10.2.02a00030
Rodríguez-Hernández, J., Reguera, E., Lima, E., Balmaseda, J., Martínez-García, R., & Yee-Madeira, H. (2007). An atypical coordination in hexacyanometallates: Structure and properties of hexagonal zinc phases. Journal of Physics and Chemistry of Solids, 68(9), 1630-1642. doi:10.1016/j.jpcs.2007.03.054
Siroux, B., Beaucaire, C., Tabarant, M., Benedetti, M. F., & Reiller, P. E. (2017). Adsorption of strontium and caesium onto an Na-MX80 bentonite: Experiments and building of
a coherent thermodynamic modelling. Applied Geochemistry, 87,
167-175. doi:10.1016/j.apgeochem.2017.10.022
Vipin, A. K., Ling, S., & Fugetsu, B. (2016). Removal of Cs+ and Sr2+ from water using MWCNT reinforced Zeolite-A beads. Microporous and Mesoporous Materials, 224,
84-88. doi:10.1016/j.micromeso.2015.11.024
Yasunari, T. J., Stohl, A., Hayano, R. S., Burkhart, J. F., Eckhardt, S., & Yasunari, T. (2011). Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proceedings of the National Academy of Sciences, 108(49), 1953-19534. doi:10.1073/pnas.1112058108