SUSPENSION CULTURE AND FLOCCULATION OF CHLORELLA VULGARIS FOR IMMOBILISED CULTIVATION IN ANGLED BIOFILM PHOTOBIOREACTORS
Main Article Content
Abstract
Cultivation technology of Chlorella vulgaris shows great potential in wastewater treatment along with biomass collection for biofuel production. Suspended, autotrophic cultivation at various scales is still the main method to increase algal biomass in different stages of algae technology. In this study, C. vulgaris was cultured to proliferate in a 2 l suspension system to prepare biomass for immobilised cultivation in a biofilm photobioreactor. The initial cell density and light intensity suitable for suspension culture were determined to be 5.105 cells/ml and 120 µmol photons/m2/s. After 20 days of culture, the density of dry algal biomass in the 2 l system reached 0.315 g/l. To concentrate the algal suspension for immobilisation into biofilm, alum (KAl(SO4)2) was used at concentrations from 0.2 to 2 g/l to form flocculation. The concentration of alum 0.2 g/l was most efficient (95% of the algae in the suspension was flocculated), and the obtained algae had a strong proliferative ability when being immobilised in the angled biofilm photobioreactor.
Keywords
alum, biofilm, Chlorella vulgaris, flocculation, KAl(SO4)2
Article Details
References
Chua, E. T., Shekh, A. Y., Eltanahy, E., Thomas-Hall, S. R., & Schenk, P. M. (2020). Effective Harvesting of Nannochloropsis Microalgae Using Mushroom Chitosan: A Pilot-Scale Study. Frontiers in Bioengineering and Biotechnology, 8, 771. https://doi.org/10.3389/fbioe.2020.00771
Demir, I., Besson, A., Guiraud, P., & Formosa-Dague, C. (2020). Towards a better understanding of microalgae natural flocculation mechanisms to enhance flotation harvesting efficiency. Water Science and Technology, 82(6). https://doi.org/10.2166/wst.2020.177ï
Do, T. T., Ong, B. N., Le, T. L., Nguyen, T. C., Tran Thi, B. H., Thu Hien, B. T., Melkonian, M., & Tran, H.D. (2021). Growth of Haematococcus pluvialis on a small-scale angled porous substrate photobioreactor for green stage biomass. Applied Sciences (Switzerland), 11(4), 1788. https://www.mdpi.com/2076-3417/11/4/1788
Do, T. T., Ong, B. N., Nguyen Tran, M. L., Nguyen, D., Melkonian, M., & Tran, H. D. (2019). Biomass and Astaxanthin Productivities of Haematococcus pluvialis in an Angled Twin-Layer Porous Substrate Photobioreactor: Effect of Inoculum Density and Storage Time. Biology (Basel), 8(3). https://doi.org/10.3390/biology8030068
Ekelhof, A. (2016). Biotechnological Aspects of Extracellular Polysaccharide Production by Microalga Netrium digitus using Twin-Layer. http://www.uni-koeln.de/
Kiperstok, A. C., Sebestyén, P., Podola, B., & Melkonian, M. (2017). Biofilm cultivation of Haematococcus pluvialis enables a highly productive one-phase process for astaxanthin production using high light intensities. Algal Research, 21, 213-222. https://doi.org/https://doi.org/10.1016/j.algal.2016.10.025
Liu, J., & Hu, Q. (2013). Chlorella : Industrial Production of Cell Mass and Chemicals. In Handbook of Microalgal Culture (pp. 327–338). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118567166.ch16
Liu, T., Wang, J., Hu, Q., Cheng, P., Ji, B., Liu, J., Chen, Y., Zhang, W., Chen, X., Chen, L., Gao, L., Ji, C., & Wang, H. (2013). Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresource Technology, 127, 216-222. https://doi.org/https://doi.org/10.1016/j.biortech.2012.09.100
Matter, I. A., Hoang Bui, V. K., Jung, M., Seo, J. Y., Kim, Y. E., Lee, Y. C., & Oh, Y. K. (2019). Flocculation harvesting techniques for microalgae: A review. In Applied Sciences (Switzerland) (Vol. 9, Issue 15, p. 3069). MDPI AG. https://doi.org/10.3390/app9153069
Melo, M., Fernandes, S., Caetano, N., & Borges, M. T. (2018). Chlorella vulgaris (SAG 211-12) biofilm formation capacity and proposal of a rotating flat plate photobioreactor for more sustainable biomass production. Journal of Applied Phycology, 30(2), 887-899. https://doi.org/10.1007/s10811-017-1290-4
Mohseni, F., & Moosavi Zenooz, A. (2021). Flocculation of Chlorella vulgaris with alum and pH adjustment. Biotechnology and Applied Biochemistry, bab.2182. https://doi.org/10.1002/bab.2182
Naumann, T., Çebi, Z., Podola, B., & Melkonian, M. (2013). Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. Journal of Applied Phycology, 25(5), 1413–1420. https://doi.org/10.1007/s10811-012-9962-6
Nguyen, T. D. P., Tran, T. N. T., Le, T. V. A., Nguyen Phan, T. X., Show, P. L., & Chia, S. R. (2019). Auto-flocculation through cultivation of Chlorella vulgaris in seafood wastewater discharge: Influence of culture conditions on microalgae growth and nutrient removal. Journal of Bioscience and Bioengineering, 127(4), 492-498. https://doi.org/10.1016/j.jbiosc.2018.09.004
Shi, J., Podola, B., & Melkonian, M. (2007). Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. Journal of Applied Phycology, 19(5), 417–423. https://doi.org/10.1007/s10811-006-9148-1
Shi, J., Podola, B., & Melkonian, M. (2014). Application of a prototype-scale twin-layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresource Technology, 154, 260–266. https://doi.org/10.1016/j.biortech.2013.11.100
Suparmaniam, U., Lam, M. K., Uemura, Y., Shuit, S. H., Lim, J. W., Show, P. L., Lee, K. T., Matsumura, Y., & Le, P. T. K. (2020). Flocculation of Chlorella vulgaris by shell waste-derived bioflocculants for biodiesel production: Process optimization, characterization and kinetic studies. Science of the Total Environment, 702, 134995. https://doi.org/10.1016/j.scitotenv.2019.134995
Tran, H. D., Do, T. T., Le, T. L., Tran-Nguyen, M. L., Pham, C. H., & Melkonian, M. (2019). Cultivation of Haematococcus pluvialis for astaxanthin production on angled bench-scale and large-scale biofilm-based photobioreactors. Vietnam Journal of Science, Technology and Engineering, 61, 61-70.
Tran, S. N., Pham, T. T. N., & Huynh, T. N. H. (2017). The growth ability of Chlorella sp. in heterotrophic culture. Can Tho University Journal of Science, 50, 127. https://doi.org/10.22144/ctu.jvn.2017.045
Wong, Y. K. (2016). Feasibility of using Chlorella vulgaris for the production of algal lipids, for advancement towards a potential application in the manufacture of commodity chemicals and the treatment of wastewater. Open Access Theses and Dissertations. https://repository.hkbu.edu.hk/etd_oa/254
Yeh, K. L., Chang, J. S., & Chen, W. M. (2010). Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Engineering in Life Sciences, 10(3), 201-208. https://doi.org/10.1002/elsc.200900116
Yuan, H., Wang, Y., Xi, Y., Jiang, Z., Zhang, X., Wang, X., & Zhang, X. (2020). Light-Emitting Diode Power Conversion Capability and CO2 Fixation Rate of Microalgae Biofilm Cultured Under Different Light Spectra. Energies, 13, 1536. https://doi.org/10.3390/en13071536
Yusof, N. S., Yeong, Y. S., Zakeri, H. A., Effendy, M., Wahid, A., Nabila, S., Ghafar, A., & Yusuf, N. (2021). Photoperiod influenced the growth and antioxidative responses of Chlorella vulgaris, Isochrysis galbana, and Tetraselmis chuii ARTICLE INFO. Journal of Applied Pharmaceutical Science, 11(04), 125–134. https://doi.org/10.7324/JAPS.2021.110415
Zhu, L., Li, Z., & Hiltunen, E. (2018). Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnology for Biofuels, 11, 183. https://doi.org/10.1186/s13068-018-1183-z