A STUDY ON THERMOLUMINESCENCE (TL) SPECTRA USING PYTHON SOFTWARE

Duy Sang Nguyễn , Ngọc Hóa Lê

Main Article Content

Abstract

 

 

Thermoluminescence (TL) spectra are complex curves that do not follow normal distributions but follow a general, first-, second-order, one-center recombination trap or mixing model. This paper presents a method to use Python software to simulate and fit the experimental curve of the TL spectrum based on different models. The TL spectral simulation method is based on the trap parameter or the spectral peak parameter according to the kinetic equations. The processing and analysis of the TL spectrum show the characteristic parameters of the TL spectrum of the material such as the activation energy, frequency factor, and trap lifetime. The results show that the simulated and matched TL spectrum fits the general order model. The small spectral matching coefficient shows that the simulated and experimental TL spectra are similar.

 

Article Details

References

Amit, G., & Datz, H. (2018). Automatic detection of anomalous thermoluminescent dosimeter glow curves using machine learning. Radiation Measurements, 117, 80-85. https://doi.org/10.1016/j.radmeas.2018.07.014
Aşlar, E., Şahiner, E., Polymeris, G. S., & Meriç, N. (2021). Thermally and optically stimulated luminescence properties of BeO dosimeter with double TL peak in the main dosimetric region. Applied Radiation and Isotopes, 170, 109635. https://doi.org/10.1016/j.apradiso.2021.109635
Bassinet, C., & Le Bris, W. (2020). TL investigation of glasses from mobile phone screen protectors for radiation accident dosimetry. Radiation Measurements, 136, 106384. https://doi.org/10.1016/j.radmeas.2020.106384
Bos, A. J. J., Piters, T. M., Ros, J. M. G., & Delgado, A. (1993). An intercomparison of glow curve analysis computer programs: I. Synthetic Glow Curves. Radiat Prot Dosim, 47(1), 473-477. http://doi.org/10.1093/oxfordjournals.rpd.a081789
Bos, A. J. J., Piters, T. M., Ros, J. M. G., & Delgado, A. (1994). An intercomparison of glow curve analysis computer programs: II. Measured Glow Curves. Radiat Prot Dosim, 51(1), 257-264. http://doi.org/10.1093/oxfordjournals.rpd.a082143
Chopra, V., Singh, L., & Lochab, S. P. (2013). Thermoluminescence characteristics of gamma irradiated Li2B4O7:Cu nanophosphor. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 717, 63-68. http://dx.doi.org/10.1016/j.nima.2013.03.015
Kitis, G., & Gomez-Ros, J. M. (2000). Thermoluminescence glow-curve deconvolution functions for mixed order of kinetics and continuous trap distribution. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 440(1), 224-231. http://dx.doi.org/10.1016/S0168-9002(99)00876-1
Kitis, G., Gomez-Ros, J. M., & Tuyn, J. W. N. (1998). Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. J Phys D: Appl Phys, 31(19), 2636.
Kitis, G., & Pagonis, V. (2017). New expressions for half life, peak maximum temperature, activation energy and kinetic order of a thermoluminescence glow peak based on the Lambert W function. Radiation Measurements, 97, 28-34. doi:10.1016/j.radmeas.2016.12.013
Kitis, G., & Vlachos, N. D. (2013). General semi-analytical expressions for TL, OSL and other luminescence stimulation modes derived from the OTOR model using the Lambert W-function. Rad Meas, 48, 47-54. http://dx.doi.org/10.1016/j.radmeas.2012.09.006
Kröninger, K., Mentzel, F., Theinert, R., & Walbersloh, J. (2019). A machine learning approach to glow curve analysis. Radiation Measurements, 125, 34-39. https://doi.org/10.1016/j.radmeas.2019.02.015
Murray-Wallace, C. V., Jones, B. G., Nghi, T., Price, D. M., Vinh, V. V., Tinh N. T., & Nanson, G. C. (2002). Thermoluminescence ages for a reworked coastal barrier, southeastern Vietnam: a preliminary report. Journal of Asian Earth Sciences, 20(5), 535-548. http://dx.doi.org/10.1016/S1367-9120(01)00040-2
Nguyen, D. S. (2013). Nghien cuu ung dung hien tuong nhiet huynh quang trong viec xac dinh san pham chieu xa o Viet Nam [Research on the application of thermoluminescence phenomenon in determining irradiated products in Vietnam]. Can Tho University Journal of Science, 29, 105-110.
Nguyen, D. S. (2015). Do pho nhiet huynh quang cua bot ot voi cac lieu chieu xa khac nhau [Measuring fluorescent thermal-spectrum of chili powder by different dose of irradiation].
Ho Chi Minh City University of Education Journal of Science, 9(75).
Nguyen D. S. (2017). Study of the effect of gamma-irradiation on the activation energy value from the thermoluminescence glow curve. Journal of Taibah University for Science, 11(6), 1221-1221. doi:10.1016/j.jtusci.2016.10.006
Nguyen, D. S., Tran, V. H., Nguyen, V. H., Tran, & Nguyen Q. H. (2017). Using the computerized glow curve deconvolution method and the R package tgcd to determination of thermoluminescence kinetic parameters of chilli powder samples by GOK model and OTOR one. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 394, 113-120. https://doi.org/10.1016/j.nimb.2017.01.012
Nguyen, D. S., Tran, V. H., Nguyen, V. H., Tran, & Nguyen, Q. H. (2018). Determine dose-saturation level from thermoluminescence curves by the GOK and OTOR models. Journal of Taibah University for Science, 12(6), 846-851. doi:10.1080/16583655.2018.1526660
Pagonis, V., Kitis, G., & Furetta, C. (2006). Numerical and Practical Exercises in Thermoluminescence. Springer, United States of America.
Peng, J., Dong, Z., & Han, F. (2016). tgcd: An R package for analyzing thermoluminescence glow curves. SoftwareX, 5, 112-120. https://doi.org/10.1016/j.softx.2016.06.001
Peng, J., Kitis, G., Sadek, A. M., Karsu Asal, E. C., & Li, Z. (2021). Thermoluminescence glow-curve deconvolution using analytical expressions: A unified presentation. Applied Radiation and Isotopes, 168, 109440. https://doi.org/10.1016/j.apradiso.2020.109440
Puchalska, M., & Bilski, P. (2006). GlowFit – a new tool for thermoluminescence glow-curve deconvolution. Rad Meas, 41(6), 659-664. http://dx.doi.org/10.1016/j.radmeas.2006.03.008
Sadek, A. M., Eissa, H. M., Basha, A. M., Carinou, E., Askounis, P., & Kitis, G. (2015). The deconvolution of thermoluminescence glow-curves using general expressions derived from the one trap-one recombination (OTOR) level model. Appl Radiat Isot., 95, 214-221. http://dx.doi.org/10.1016/j.apradiso.2014.10.030
Severance, C. (2015). Guido van Rossum: The Early Years of Python. Computer, 48, 7-9. doi:10.1109/MC.2015.45
Singh, L. L., & Gartia, R. K. (2015). Derivation of a simplified OSL OTOR equation using Wright Omega function and its application. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 346, 45-52. http://dx.doi.org/10.1016/j.nimb.2015.01.038
Sunta, C. M., Ayta, W. E. F., Chubaci, J. F. D., & Watanabe, S. (2002). General order and mixed order fits of thermoluminescence glow curves—a comparison. Radiation Measurements, 35(1), 47-57. http://dx.doi.org/10.1016/S1350-4487(01)00257-8
Theinert, R., Kröninger, K., Lütfring, A., Mender, S., Mentzel, F., & Walbersloh, J. (2018). Fading time and irradiation dose estimation from thermoluminescent dosemeters using glow curve deconvolution. Radiation Measurements, 108, 20-25. https://doi.org/10.1016/j.radmeas.2017.11.002