TRIEBEL-LIZORKIN-MORREY SPACES ASSOCIATED WITH NONNEGATIVE SELF-ADJOINT OPERATOR

Trí Dũng Trần , Ngọc Trọng Nguyễn , Hoàng Trúc Nguyễn

Main Article Content

Abstract

 

Let L be a nonnegative self-adjoint operator on  with a heat kernel satisfying a Gaussian upper bound. In this work, we introduce Triebel-Lizorkin-Morrey spaces  associated with the operator L for the entire range . We then prove that our new spaces satisfy important features such as continuous characterizations in terms of square functions, or atomic decomposition.

 

 

Article Details

References

Bui, H. Q., Bui, T. A., & Duong, X. T. (2020). Weighted Besov and Triebel-Lizorkin spaces associated with operators and applications. Forum Math. Sigma., 8(11), 1-95. https://doi.org/10.1017/fms.2020.6.
Bui, T. A., & Duong, X. T. (2017). Laguerre operator and its associated weighted Besov and Triebel–Lizorkin spaces. Trans. Amer. Math. Soc., 369(3), 2109-2150.
Bui, T. A., Duong, X. T., & Ly, F. K. (2018). Maximal function characterizations for new local Hardy type spaces on spaces of homogeneous type, Trans. Amer. Math. Soc., 370(10),
7229-7292.
Georgiadis, A. G., Kerkyacharian, G., Kyriazis, G., & Petrushev, P. (2017). Homogeneous Besov and Triebel–Lizorkin spaces associated with non–negative self–adjoint operators. J. Math. Anal. Appl., 449(2), 1382-1412.
Han, Y. S., & Sawyer, E. T. (1994). Littlewood–Paley theory on spaces of homogeneous type and the classical function spaces. Mem. Amer. Math. Soc., 110(530), 126 p.
Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., & Yan, L. (2011), Hardy spaces associated with non-negative self-adjoint operators satisfying Davies-Gaffney estimates. Mem. Amer. Math. Soc., 214(1007).
Keryacharian, G., & Petrushev, P. (2015).Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Amer. Math. Soc., 367(1), 121-189.
Kerkyacharian, G., Petrushev, P., Picard, D., & Xu, Y. (2009). Decomposition of Triebel– Lizorkin and Besov spaces in the context of Laguerre expansions. J. Funct. Anal., 256, 1137-1188.
Nguyen, N. T., Le, X. T., Tran, T. D. & Vo, H. N. (2020). Triebel-Lizorkin-Morrey spaces associated with Hermite operators. Rev. Mat. Complut., 33, 527-555.
Petrushev, P., & Xu, Y. (2008), Decomposition of spaces of distributions induced by Hermite expansions. J. Fourier Anal. Appl., 14(3), 372-414.
Sawano, Y. (2008). Wavelet characterization of Besov-Morrey and Triebel-Lizorkin-Morrey spaces. Funct. Approx. Comment. Math., 38, 93-108.
Tang, L., & Xu, J. (2005). Some properties of Morrey type Besov-Triebel spaces. Math. Nachr., 278,
904-917.
Wang, H. (2009). Decomposition for Morrey type Besov-Triebel spaces. Math. Nachr., 282(5),
774-787.