THE FLOCCULATION EFFICIENCY OF MICROALGA DUNALIELLA SALINA USING CHITOSAN
Main Article Content
Abstract
Dunaliella salina, a unicellular, eukaryotic marine green microalgae, is a promising source of biomass for the production of cosmetics, pharmaceuticals, and biofuels. The cells are generally small in size and can synthesize large amounts of carotenoids, especially β-carotene pigments under different stress conditions. Harvesting D. salina A9 by using Chitosan flocculation with concentrations of 65-85 mg/L and pH values from > 6.5 to > 8.5 was used to evaluate the flocculation efficiency of the microalga in a pilot-scale in Vietnam. The results showed that the Chitosan concentration of 85 mg/L and pH > 8.5 obtained higher flocculation of D. salina A9 than low conditions. Similarly, the flocculation efficiency of microalgae at 85 mg/L of chitosan concentration and pH > 8.5 was highest with 94.19%.
Keywords
chitosan, Dunaliella salina, flocculation method
Article Details
References
Ben-Amotz, A. (2019). Bioactive compounds: glycerol production, carotenoid production, fatty acids production. The Alga Dunaliella, Biodiversity, Physiology, Genomics and Biotechnology, 189-207.
Blockx, J., Verfaillie, A., Thielemans, W., Muylaert, K. J. A. S. C., & Engineering (2018). Unravelling the mechanism of chitosan-driven flocculation of microalgae in seawater as a function of pH, 6(9), 11273-11279.
Butcher, R. (1959). An undescribed species of Dunaliella from the Cambridge collection of algae. Hydrobiologia, 12(4), 249-250.
Chua, E. T., Eltanahy, E., Jung, H., Uy, M., Thomas‐Hall, S. R., & Schenk, P. M. J. G. C. (2019). Efficient Harvesting of Nannochloropsis Microalgae via Optimized Chitosan‐Mediated Flocculation, 3(1), 1800038.
Guillard, R. R., & Sieracki, M. S. (2005). Counting cells in cultures with the light microscope. Algal culturing techniques, 239-252.
Low, Y., & Lau, S. W. (2017). Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement. Paper presented at the IOP Conference Series: Materials Science and Engineering.
Matter, I. A., Darwesh, O. M., & Eida, M. F. J. J. J. O. B. S. (2018). Harvesting of Scenedesmus obliquus by Bioflocculation: Appropriate Chitosan Concentrations with Various pH Values at Different Growth Stages, 11(5).
Morales, J., de la Noüe, J., & Picard, G. (1985). Harvesting marine microalgae species by chitosan flocculation. Aquacultural Engineering, 4(4), 257-270. https://doi.org/10.1016/0144-8609(85)90018-4
Rashid, N., Rehman, S. U., & Han, J.-I. J. P. B. (2013). Rapid harvesting of freshwater microalgae using chitosan, 48(7), 1107-1110.
Singh, P., Baranwal, M., & Reddy, S. M. (2016). Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress. Pharm Biol, 54(10), 2269-2275. doi:10.3109/13880209.2016.1153660
Tork, M. B., Khalilzadeh, R., & Kouchakzadeh, H. J. B. t. (2017). Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology, Biotechnol Biofuels, 243, 583-588.
Trang, S. T., Nguyen, T. K. H., Nguyen, C. M., Tran, T. L. T., & Nguyen, T. H. (2016). Optimization of Harvesting of Microalgal Thalassiosira pseudonana Biomass Using Chitosan Prepared from Shrimp Shell Waste. Asian Journal of Agricultural Research, 10, 162-174
Xu, Y., Purton, S., & Baganz, F. (2013). Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresource technology, 129, 296-301.
Zhu, L., Li, Z., & Hiltunen, E. J. B. f. b. (2018). Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol Biofuels, 11(1), 183.