A WEIGHTED LORENTZ ESTIMATE FOR DOUBLE-PHASE PROBLEMS

Thị Thanh Trúc Đặng 1, , Lê Tuyết Nhi Phạm 1
1 Khoa Toán-Tin, trường Đại học Sư phạm Thành phố Hồ Chí Minh

Main Article Content

Abstract

Double-phase problems were modeled by minimizing the problems of a class of integral energy functionals with non-standard growth conditions. They have many applications in physics, such as nonlinear elasticity, fluid dynamics, and homogenization. The present paper provides a global gradient estimate for distribution solutions to double-phase problems in Lorentz spaces associated with a Muckenhoupt weight. In particular, this work is a weighted version of the main result found by Tran and Nguyen (2021). Our method is based on a construction of the weighted distribution inequality on fractional maximal operators, which have close relations to
Riesz potential. 

 

Article Details

References

Baroni, P., Colombo, M., & Mingione, G. (2015). Harnack inequalities for double phase functionals. Nonlinear Anal., 121, 206-222.
Baroni, P., Colombo, M., & Mingione, G. (2016). Non-autonomous functionals, borderline cases and related function classes. St. Petersburg Mathematical Journal, 27(3), 347-379.
Baroni, P., Colombo, M., & Mingione, G. (2018). Regularity for general functionals with double-phase. Calc. Var. Partial Differential Equations, 57(2), 1-48.
Benkirane, A., & El Vally, M. S. (2014). Variational inequalities in Musielak-Orlicz-Sobolev spaces. Bulletin of the Belgian Mathematical Society-Simon Stevin, 21(5), 787-811.
Byun, S. S, & Oh, J. (2017). Global gradient estimates for non-uniformly elliptic equations. Calc. Var. Partial Differential Equations, 56(2), 1-36.
Caffarelli, L. A., & Peral, I. (1998). On estimates for elliptic equations in divergence form. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 51(1), 1-21.
Colombo, M., & Mingione, G. (2015a). Regularity for double phase variational problems. Arch. Ration. Mech. Anal., 215(2), 443-496.
Colombo, M., & Mingione, G. (2015b). Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal, 218(1), 219-273.
Colombo, M., & Mingione, G. (2016). Calderón–Zygmund estimates and non-uniformly elliptic operators. J. Funct. Anal., 270(4), 1416-1478.
De Filippis, C., & Mingione, G. (2020). A borderline case of Calderón–Zygmund estimates for non-uniformly elliptic problems. St. Petersburg Mathematical Journal, 31(3), 455-477.
Esposito, L., Leonetti, F., & Mingione, G. (2004). Sharp regularity for functionals with (p, q) growth. J. Differ. Equ., 204(1), 5-55.
Grafakos, L. (2004). Classical and modern Fourier analysis. Prentice Hall.
Nguyen, T. N., & Tran, M. P. (2020). Lorentz improving estimates for the p-Laplace equations with mixed data. Nonlinear Anal., 200, 111960.
Nguyen, T. N., & Tran, M. P. (2021a). Level-set inequalities on fractional maximal distribution functions and applications to regularity theory. J. Funct. Anal., 280(1), 108797.
Nguyen, T. N., & Tran, M. P. (2021b). Lorentz estimates for quasi-linear elliptic double obstacle problems involving a Schrödinger term. Math. Methods Appl. Sci., 44(7), 6101-6116.
Tran, M. P., & Nguyen, T. N. (2019a). Generalized good-λ techniques and applications to weighted Lorentz regularity for quasilinear elliptic equations. C. R. Acad. Sci. Paris, Ser. I, 357(8), 664-670.
Tran, M. P., & Nguyen, T. N. (2019b). Gradient estimates via Riesz potentials and fractional maximal operators for quasilinear elliptic equations with applications. Preprint, arXiv:1907.01434v2.
Tran, M. P., & Nguyen, T. N. (2020). New gradient estimates for solutions to quasilinear divergence form elliptic equations with general Dirichlet boundary data. J. Differ. Equ., 268(4), 1427-1462.
Tran, M. P., & Nguyen, T. N. (2021). Global Lorentz estimates for non-uniformly nonlinear elliptic equations via fractional maximal operators. J. Math. Anal. Appl., 501(1), 124084.
Tran, M. P., & Nguyen, T. N. (2022a). Weighted distribution approach to gradient estimates for quasilinear elliptic double-obstacle problems in Orlicz spaces. J. Math. Anal. Appl., 509(1), 125928.
Tran, M. P., & Nguyen, T. N. (2022b). Global gradient estimates for very singular quasilinear elliptic equations with non-divergence data. Nonlinear Anal., 214, 112613.
Tran, M. P., Nguyen, T. N., & Nguyen, G. B. (2021). Lorentz gradient estimates for a class of elliptic p-Laplacian equations with a Schrödinger term. J. Math. Anal. Appl., 496(1), 124806.
Zhikov, V. V. (1986). Averaging of functionals of the calculus of variations and elasticity theory. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 50(4), 675-710.
Zhikov, V. V. (1995). On Lavrentiev’s Phenomenon, Russian J. Math. Phys., 3, 249-269.
Zhikov, V. V. (1997). On some variational problems. Russian J. Math. Phys., 5(1), 105-116.