SYNTHESIS AND ELECTRICAL PROPERTIES OF TiO2@CNTs NANOPARTICLES

Thị Thu Trang Nguyễn , Lê Thanh Nguyên Huỳnh , Nguyễn Thảo Trang Lê

Main Article Content

Abstract

 

Electrode materials play an important role in the performance of the supercapacitor. The combination of nanosized carbon materials and TiO2 is one of the advanced solutions to improve the electrochemical properties of the electrode. In this study, we synthesized TiO2@CNTs nanocomposite materials using the sol-gel method and studied the electrochemical properties of the synthesized materials. The composite TiO2@CNTs materials have anatase-like structures and grain sizes in the range of 300-700 nm. Adding CNTs to the product increases thermal stability and the specific surface area of the material. Electrochemical results show that TiO2@1%CNTs composite electrode stores energy by pseudocapacitor mechanism, the highest specific capacitance in 1M Na2SO4 solution is 218.6 F.g-1. Moreover, the TiO2@CNTs electrodes operate stably for over
1200 cycles.

 

Article Details

References

Conway, B. E. (1999). Similarities and Differences between Supercapacitors and Batteries for Storing Electrical Energy. Electrochemical Supercapacitors, 2, 11-31. https://doi.org/10.1007/978-1-4757-3058-6_2
Elmouwahidi, A., Bailón-García, E., Castelo-Quibén, J., Pérez-Cadenas, A. F., Maldonado-Hódar, F. J., & Carrasco-Marín, F. (2018). Carbon–TiO 2 composites as high-performance supercapacitor electrodes: synergistic effect between carbon and metal oxide phases. Journal of Materials Chemistry A, 6(2), 633-644. https://doi.org/10.1039/C7TA08023A
Le, V. T., Kim, H., Ghosh, A., Kim, J., Chang, J., … Lee, Y. H. (2013). Coaxial Fiber Supercapacitor Using All-Carbon Material Electrodes. ACS Nano, 7(7), 5940-5947. https://doi.org/10.1021/nn4016345
Li, Z., Xu, K., & Pan, Y. (2019). Recent development of Supercapacitor Electrode Based on Carbon Materials. Nanotechnology Reviews, 8(1), 35-49. https://doi.org/10.1515/ntrev-2019-0004
Lu, X., Wang, G., Zhai, T., Yu, M., Gan, J., Tong, Y., & Li, Y. (2012). Hydrogenated TiO2 Nanotube Arrays for Supercapacitors. Nano Letters, 12(3), 1690-1696. https://doi.org/10.1021/nl300173j
Martins, A. C., Cazetta, A. L., Pezoti, O., Souza, J. R. B., Zhang, T., Pilau, E. J., Asefa, T., & Almeida, V. C. (2017). Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceramics International, 43(5), 4411-4418. https://doi.org/10.1016/j.ceramint.2016.12.088
Naeem, F., Naeem, S., Zhao, Y., Wang, D., Zhang, J., Mei, Y. F., & Huang, G. (2019). TiO2 Nanomembranes Fabricated by Atomic Layer Deposition for Supercapacitor Electrode with Enhanced Capacitance. Nanoscale Research Letters, 14. https://doi.org/10.1186/s11671-019-2912-3
Nguyen, M. T., Nguyen, C. K., Vu, T. M. P., Duong, Q. Van, Pham, T. L., & Nguyen, T. C. (2014). A study on carbon nanotube titanium dioxide hybrids: Experiment and calculation. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5(4). https://doi.org/10.1088/2043-6262/5/4/045018
Pham, V. H., Nguyen-Phan, T. D., Tong, X., Rajagopalan, B., Chung, J. S., & Dickerson, J. H. (2018). Hydrogenated TiO2@reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon, 126, 135-144. https://doi.org/10.1016/j.carbon.2017.10.026
Ren, J., Bai, W., Guan, G., Zhang, Y., & Peng, H. (2013). Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite Fiber. Advanced Materials, 25(41), 5965-5970. https://doi.org/10.1002/adma.201302498
Silva, R. M., Bastos, A. C., Oliveira, F. J., Conte, D. E., Fan, Y., Pinna, N., & Silva, R. F. (2015). Catalyst-free growth of carbon nanotube arrays directly on Inconel® substrates for electrochemical carbon-based electrodes. Journal of Materials Chemistry A, 3(34), 17804-17810. https://doi.org/10.1039/C5TA03734D
Simon, P., & Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature Materials, 7(11), 845–854. https://doi.org/10.1038/nmat2297
Wang, Q., Wen, Z., & Li, J. (2007). Carbon Nanotubes/TiO2 Nanotubes Hybrid Supercapacitor. Journal of Nanoscience and Nanotechnology, 7(9), 3328-3331. https://doi.org/10.1166/jnn.2007.679
Yang, S., Li, Y., Sun, J., & Cao, B. (2019). Laser induced oxygen-deficient TiO2/graphene hybrid for high-performance supercapacitor. Journal of Power Sources, 431(January), 220-225. https://doi.org/10.1016/j.jpowsour.2019.05.016
Yang, S., Lin, Y., Song, X., Zhang, P., & Gao, L. (2015). Covalently Coupled Ultrafine H-TiO2 Nanocrystals/Nitrogen-Doped Graphene Hybrid Materials for High-Performance Supercapacitor. ACS Applied Materials & Interfaces, 7(32), 17884-17892. https://doi.org/10.1021/acsami.5b04368
Zhu, Y., Ling, Q., Liu, Y., Wang, H., & Zhu, Y. (2015). Photocatalytic H 2 evolution on MoS 2 –TiO 2 catalysts synthesized via mechanochemistry. Physical Chemistry Chemical Physics, 17(2), 933–940. https://doi.org/10.1039/C4CP04628E