USING CUCURBIT[8]URIL TO CREATE DIMERIZATION OF PROTEIN CFP/YFP

Thanh Dũng Đặng

Main Article Content

Abstract

Protein dimerization plays an important role in many cellular biological activities, such as activated enzymes, membrane protein receptors, signaling factors, and transcription factors. Therefore, controlling protein dimerization helps to prevent these biological processes. In this study, the molecule curcubit[8]uril was used to manage the dimerization of protein consisting of the-ala-gly motif at the N-terminus. The CFP/YFP protein pair containing the phe-ala-gly fusion motif was generated using an auto cleavage intein system. The Curcubit[8]uril molecule that induces dimerization of the CFP/YFP protein containing the phe-ala-gly motif was evaluated by FRET (fluorescnt resonance energy transfer) technique. The FRET ratio of 525 nm/475 nm increased significantly from 0.5 to 1.2 in the presence of curcubit[8]uril, which means that this molecule is capable of inducing the dimerization of CFP and YFP proteins bearing the phe-ala-gly motif. Control of protein dimerization by curcubit[8]uril can potentially control biologically functional proteins containing the phe-ala-gly fusion motif.

Article Details

References

Ahsan, A. (2016). Mechanisms of Resistance to EGFR Tyrosine Kinase Inhibitors and Therapeutic Approaches: An Update. Adv Exp Med Biol, 893, 137-153. doi:10.1007/978-3-319-24223-1_7
Ardejani, M. S., Li, N. X., & Orner, B. P. (2011). Stabilization of a protein nanocage through the plugging of a protein-protein interfacial water pocket. Biochemistry, 50(19), 4029-4037. doi:10.1021/bi200207w
Baselga, J., & Swain, S. M. (2009). Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer, 9(7), 463-475. doi:10.1038/nrc2656
Bayle, J. H., Grimley, J. S., Stankunas, K., Gestwicki, J. E., Wandless, T. J., & Crabtree, G. R. (2006). Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Chem Biol, 13(1), 99-107. doi:10.1016/j.chembiol.2005.10.017
Citri, A., & Yarden, Y. (2006). EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol, 7(7), 505-516. doi:10.1038/nrm1962
Dang, D. T., S. J., & Brunsveld, L. (2012). Cucurbit [8] uril-mediated protein homotetramerization. Chemical Science, 3(9), 2679-2684.
Dang, D. T. (2022a). Characterization of TERRA 9 repeat G4-binding RHAU peptides by Fluorescence Resonance Energy Transfer. Science and Technology Development Journal, 25(1), 2336-2341.
Dang, D. T. (2022b). Molecular Approaches to Protein Dimerization: Opportunities for Supramolecular Chemistry. Front Chem, 10, 829312. doi:10.3389/fchem.2022.829312
Dang, D. T., Bosmans, R. P., Moitzi, C., Voets, I. K., & Brunsveld, L. (2014). Solution structure of a cucurbit[8]uril induced compact supramolecular protein dimer. Org Biomol Chem, 12(46), 9341-9344. doi:10.1039/c4ob01729c
Dang, D. T., Nguyen, H. D., Merkx, M., & Brunsveld, L. (2013). Supramolecular control of enzyme activity through cucurbit[8]uril-mediated dimerization. Angew Chem Int Ed Engl, 52(10), 2915-2919. doi:10.1002/anie.201208239
Dang, D. T., Nguyen, L. T. A., Truong, T. T. T., Nguyen, H. D., & Phan, A. T. (2021). Construction of a G-quadruplex-specific DNA endonuclease. Chem Commun (Camb), 57(37), 4568-4571. doi:10.1039/d0cc05890d
Dang, D. T., & Phan, A. T. (2019). Development of a ribonuclease containing a G4-specific binding motif for programmable RNA cleavage. Sci Rep, 9(1), 7432. doi:10.1038/s41598-019-42143-8
Dang, D. T., van Onzen, A., Dorland, Y. L., & Brunsveld, L. (2018). Cucurbit[8]uril Reactivation of an Inactivated Caspase-8 Mutant Reveals Differentiated Enzymatic Substrate Processing. Chembiochem, 19(23), 2490-2494. doi:10.1002/cbic.201800521
Ferrer-Soler, L., Vazquez-Martin, A., Brunet, J., Menendez, J. A., De Llorens, R., & Colomer, R. (2007). An update of the mechanisms of resistance to EGFR-tyrosine kinase inhibitors in breast cancer: Gefitinib (Iressa) -induced changes in the expression and nucleo-cytoplasmic trafficking of HER-ligands (Review). Int J Mol Med, 20(1), 3-10.
Gazon, H., Barbeau, B., Mesnard, J. M., & Peloponese, J. M., Jr. (2017). Hijacking of the AP-1 Signaling Pathway during Development of ATL. Front Microbiol, 8, 2686. doi:10.3389/fmicb.2017.02686
Grueninger, D., Treiber, N., Ziegler, M. O., Koetter, J. W., Schulze, M. S., & Schulz, G. E. (2008). Designed protein-protein association. Science, 319(5860), 206-209. doi:10.1126/science.1150421
Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer, 5(5), 341-354. doi:10.1038/nrc1609
Junius, F. K., O'Donoghue, S. I., Nilges, M., Weiss, A. S., & King, G. F. (1996). High resolution NMR solution structure of the leucine zipper domain of the c-Jun homodimer. J Biol Chem, 271(23), 13663-13667. doi:10.1074/jbc.271.23.13663
Kharenko, O. A., & Ogawa, M. Y. (2004). Metal-induced folding of a designed metalloprotein. J Inorg Biochem, 98(11), 1971-1974. doi:10.1016/j.jinorgbio.2004.07.015
Marianayagam, N. J., Sunde, M., & Matthews, J. M. (2004). The power of two: protein dimerization in biology. Trends Biochem Sci, 29(11), 618-625. doi:10.1016/j.tibs.2004.09.006
Mason, J. M., & Arndt, K. M. (2004). Coiled coil domains: stability, specificity, and biological implications. Chembiochem, 5(2), 170-176. doi:10.1002/cbic.200300781
Nguyen, H. D., Dang, D. T., van Dongen, J. L., & Brunsveld, L. (2010). Protein Dimerization Induced by Supramolecular Interactions with Cucurbit[8]uril. Angew Chem Int Ed Engl, 49(5), 895-898. doi:10.1002/anie.200904413