HAEMATOCOCCUS PLUVIALIS IN A TILTED TWIN–LAYER POROUS SUBSTRATE PHOTOBIOREACTOR SYSTEM: EFFECTS OF DIFFERENT CARBON SOURCES ON ASTAXANTHIN GROWTH AND ACCUMULATION
Main Article Content
Abstract
Microalgae are known to be an important source of organic compounds with many different applications. However, microalgae culture mainly uses the suspension culture model, consumes a lot of water and energy, and harvesting requires money and labor. The Algae culture model on Twin–layer photobioreactor system can overcome the above disadvantages. In this study, the inclined TL-PSBR system was used to culture Haematococcus pluvialis microalgae and tested for carbon source addition from NaHCO3 or CH3COONa at different concentrations. The test results showed that 35 mM CH3COONa was added to the H. pluvialis microalgae culture medium for high efficiency. The amount of dry biomass obtained on the system reached 94.78 g m-2, and the accumulated astaxanthin amount reached 1275.03 mg m-2 after only ten days of culture. These results are better than using only CO2 (dry biomass increased by 1.91 times; astaxanthin amount was 3.32 times, and the percentage of astaxanthin accumulated in biomass was more than 1.75 times). The results suggest using CH3COONa in microalgae culture on a tilted TL-PSBR system, producing astaxanthin.
Keywords
Astaxanthin, carbon source, Haematococcus pluvialis, porous substrate, twin-layer, photobioreactor
Article Details
References
Cifuentes, A. S., González, M. A., Vargas, S., Hoeneisen, M., & González, N. (2003). Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biological Research, 36(3-4),
343-357. https://doi.org/10.4067/S0716-97602003000300006
Devgoswami, C., Kalita, M., Talukdar, J., Bora, R., & Sharma, P. (2011). Studies on the growth behavior of Chlorella, Haematococcus and Scenedesmus sp. in culture media with different concentrations of sodium bicarbonate and carbon dioxide gas. African Journal of Biotechnology, 10(61), 13128-13138. https://doi.org/10.5897/AJB11.888
Do, T.-T., Ong, B.-N., Nguyen Tran, M.-L., Nguyen, D., Melkonian, M., & Tran, H.-D. (2019). Biomass and Astaxanthin Productivities of Haematococcus pluvialis in an Angled Twin-Layer Porous Substrate Photobioreactor: Effect of Inoculum Density and Storage Time. Biology, 8(3), 68. https://doi.org/10.3390/biology8030068
Emma Huertas, I., Colman, B., Espie, G. S., & Lubian, L. M. (2000). Active transport of CO2 by three species of marine microalgae. In Journal of Phycology (Vol. 36, Issue 2, pp. 314-320). https://doi.org/10.1046/j.1529-8817.2000.99142.x
Göksan, T. (2010). An Alternative Approach to the Traditional Mixotrophic Cultures of Haematococcus pluvialis Flotow (Chlorophyceae). Journal of Microbiology and Biotechnology, 20(9), 1276-1282. https://doi.org/10.4014/jmb.0909.09005
Gross, M., Jarboe, D., & Wen, Z. (2015). Biofilm-based algal cultivation systems. Appl Microbiol Biotechnol, 99(14), 5781-5789. https://doi.org/10.1007/s00253-015-6736-5
Hata, N., Ogbonna, J. C., Hasegawa, Y., Taroda, H., & Tanaka, H. (2001). Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. Journal of Applied Phycology, 13(5), 395-402. https://doi.org/10.1023/A:1011921329568
Jeon, Y.-C., Cho, C.-W., & Yun, Y.-S. (2006). Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme and Microbial Technology, 39(3), 490-495. https://doi.org/10.1016/j.enzmictec.2005.12.021
Kakizono, T., Kobayashi, M., & Nagai, S. (1992). Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis. Researchgate.Net, 74(6), 403-405. https://doi.org/https://doi.org/10.1016/0922-338X(92)90041-R
Kang, C. D., Lee, J. S., Park, T. H., & Sim, S. J. (2005). Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl Microbiol Biotechnol, 68(2), 237-241. https://doi.org/10.1007/s00253-005-1889-2
Kiperstok, A. C., Melkonian, P. D. M., & Becker, P. D. B. (2016). Optimizing immobilized cultivation of Haematococcus pluvialis for astaxanthin production [Universität zu Köln.]. In Faculty of Mathematics and Natural Sciences-Botanical Institute: Vol. PhD. https://kups.ub.uni-koeln.de/6728/
Kobayashi, M., Kakizono, T., & Nagai, S. (1993). Enhanced Carotenoid Biosynthesis by Oxidative Stress in Acetate-Induced Cyst Cells of a Green Unicellular Alga, Haematococcus pluvialis. Applied and Environmental Microbiology, 59(3), 867-873. https://doi.org/10.1128/aem.59.3.867-873.1993
Li, T., Strous, M., & Melkonian, M. (2017). Biofilm-based photobioreactors: their design and improving productivity through efficient supply of dissolved inorganic carbon. FEMS Microbiology Letters, 364(24). https://doi.org/10.1093/femsle/fnx218
Luu, T. T. (2017). Study on biological characteristics and astaxanthin rich biomass production of microalga Haematococcus pluvialis Flotow to applications for aquaculture. Doctoral thesis in Biology, Institute of Biotechnology.
Merrett, M. J., Nimer, N. A., & Dong, L. F. (1996). The utilization of bicarbonate ions by the marine microalga Nannochloropsis oculata (Droop) Hibberd. Plant, Cell and Environment, 19(4), 478-484. https://doi.org/10.1111/j.1365-3040.1996.tb00340.x
Naumann, T., Çebi, Z., Podola, B., & Melkonian, M. (2013). Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. Journal of Applied Phycology, 25(5), 1413-1420. https://doi.org/10.1007/s10811-012-9962-6
Nowack, E. C. M., Podola, B., & Melkonian, M. (2005). The 96-Well Twin-Layer System: A Novel Approach in the Cultivation of Microalgae. Protist, 156(2), 239-251. https://doi.org/https://doi.org/10.1016/j.protis.2005.04.003
Orosa, M., Franqueira, D., Cid, A., & Abalde, J. (2001). Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnology Letters, 23(5), 373-378. https://doi.org/10.1023/A:1005624005229
Oslan, S. N. H., Shoparwe, N. F., Yusoff, A. H., Rahim, A. A., Chang, C. S., Tan, J. S., Oslan, S. N., Arumugam, K., Ariff, A. Bin, Sulaiman, A. Z., & Mohamed, M. S. (2021). A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin. Biomolecules, 11(2), 256. https://doi.org/10.3390/biom11020256
Ozkan, A., Kinney, K., Katz, L., & Berberoglu, H. (2012). Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol, 114, 542-548. https://doi.org/10.1016/j.biortech.2012.03.055
Pan-utai, W., Parakulsuksatid, P., & Phomkaivon, N. (2017). Effect of inducing agents on growth and astaxanthin production in Haematococcus pluvialis: Organic and inorganic. Biocatalysis and Agricultural Biotechnology, 12, 152-158.
Studies on the growth behavior of Chlorella, Haematococcus and Scenedesmus sp. in culture media with different concentrations of sodium bicarbonate and carbon dioxide gas | Request PDF. (n.d.). Retrieved July 31, 2021, from https://www.researchgate.net/publication/256840858_Studies_on_the_growth_behavior_of_Chlorella_Haematococcus_and_Scenedesmus_sp_in_culture_media_with_different_concentrations_of_sodium_bicarbonate_and_carbon_dioxide_gas
Torzillo, G., Goksan, T., Faraloni, C., Kopecky, J., & Masojídek, J. (2003). Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. Journal of Applied Phycology, 15(2), 127-136. https://doi.org/10.1023/a:1023854904163
Tran, H. D., Do, T. T., Le, T. L., Tran-Nguyen, M. L., Pham, C. H., & Melkonian, M. (2019). Cultivation of Haematococcus pluvialis for astaxanthin production on angled bench-scale and large-scale biofilm-based photobioreactors. Vietnam Journal of Science, Technology and Engineering, 61, 61-70.
Tripathi, U., Sarada, R., & Ravishankar, G. A. (2002). Effect of culture conditions on growth of green alga — Haematococcus pluvialis and astaxanthin production. Acta Physiologiae Plantarum, 24(3), 323-329. https://doi.org/10.1007/s11738-002-0058-9
Wan, M., Hou, D., Li, Y., Fan, J., Huang, J., Liang, S., Wang, W., Pan, R., Wang, J., & Li, S. (2014). The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation. Bioresour Technol, 163, 26-32. https://doi.org/10.1016/j.biortech.2014.04.017
Wan, M., Zhang, J., Hou, D., Fan, J., Li, Y., Huang, J., & Wang, J. (2014). The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light-dark cyclic cultivation. Bioresour Technol, 167, 276–-. https://doi.org/10.1016/j.biortech.2014.06.030
Wan, M., Zhang, Z., Wang, J., Huang, J., Fan, J., Yu, A., Wang, W., & Li, Y. (2015). Sequential Heterotrophy–Dilution–Photoinduction Cultivation of Haematococcus pluvialis for efficient production of astaxanthin. Bioresource Technology, 198, 557-563. https://doi.org/10.1016/j.biortech.2015.09.031
Yin, S., Wang, J., Chen, L., & Liu, T. (2015). The water footprint of biofilm cultivation of Haematococcus pluvialis is greatly decreased by using sealed narrow chambers combined with slow aeration rate. Biotechnol Lett, 37(9), 1819-1827. https://doi.org/10.1007/s10529-015-1864-7
Zhang, B. Y., Geng, Y. H., Li, Z. K., Hu, H. J., & Li, Y. G. (2009). Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture, 295(3), 275-281. https://doi.org/https://doi.org/10.1016/j.aquaculture.2009.06.043
Zhang, W., Wang, J., Wang, J., & Liu, T. (2014). Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresour Technol, 158, 329-335. https://doi.org/10.1016/j.biortech.2014.02.044