DES PREPARED FROM P-TOLUENESULFONIC ACID CATALYZED EFFICIENTLY SELECTIVE BENZIMIDAZOLE DERIVATIVES SYNTHESIS UNDER SOLVENT-FREE CONDITION
Main Article Content
Abstract
The results of IR determined hydrogen bonding between L-proline and para-toluenesulfonic acid. The reaction conditions were investigated, including reaction temperature, reaction time, amount of catalyst, and the mole ratio of benzaldehyde and o-phenylenediamine. The best reaction conditions were obtained: reaction temperature of 80oC, a reaction time of 120 minutes, the mole ratio of benzaldehyde:o-phenylenediamine=2:1 (mmol), and the amount of used catalyst is 30% mole in the proportion of o-phenylenediamine. The results of the reusability of the catalyst showed that DES could be used four times without significantly decreasing catalytic activity after each use. Benzimidazole derivatives synthesis showed that halogen substituents reduced the reaction yields, while methyl substituents did not affect the reaction yield. In addition, the prepared DES also showed selectivity in favor of forming a disubstituted benzimidazole synthesis over monosubstituted benzimidazole synthesis.
Keywords
benzimidazole derivatives, deep eutectic solvent, p-toluenesulfonic acid, reusability
Article Details
References
Algul, O., Karabulut, A., Canacankatan, N., Gorur, A., Sucu, N., & Vezir, O. (2012). Apoptotic and anti-angiogenic effects of benzimidazole compounds: relationship with oxidative stress mediated ischemia/reperfusion injury in rat hind limb. Antiinflamm Antiallergy Agents Med Chem, 11(3), 267-275.
Alloum, A. B., Bougrin, K., & Soufiaoui M. (2003). Synthèse chimiosélective des benzimidazoles sur silice traitée par le chlorure du thionyle. Tetrahedron Lett., 44, 5935-5937.
Bahrami, K., Khodaei, M. M., & Kavianinia, I. (2007). A Simple and Efficient One-Pot Synthesis of 2-Substituted Benzimidazoles. Synthesis, 4, 547-550.
Boiani, M., & González, M. (2005). Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini-Reviews in Medicinal Chemistry, 5, 409-424.
Du, L. H., & Wang, Y. G. (2007). A Rapid and Efficient Synthesis of Benzimidazoles Using Hypervalent Iodine as Oxidant. Synthesis, 5, 675-678.
Dudd, L. M., Venardou, E., Garcia, V. E., Licence, P., Blake, A. J., Wilson, C., & Poliakoff. M. (2003). Synthesis of benzimidazoles in high-temperature water. Green Chem., 5, 187-192.
Hallett, J. P., & Welton, T. (2011). Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. Chem. Rev., 111, 3508-3576.
Hao, L., Wang, M., Shan, W., Deng, C., Ren, W., Shi, Z., & Lü, H. (2017). L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel. J. Hazard Mater., 339, 216-222.
Kokare, N. D., Sangshetti, J. N., & Shinde, D. B. (2007). One-Pot Efficient Synthesis of 2-Aryl-1-arylmethyl-1H-benzimidazoles and 2,4,5-Triaryl-1H-imidazoles Using Oxalic Acid Catalyst. Synthesis, 18, 2829-2834.
Kumar, B., Cumbal, L., & Smita, K. (2014). Ultrasound Promoted and SiO2/CCl3COOH Mediated Synthesis of 2-Aryl-1-arylmethyl-1H-benzimidazole Derivatives in Aqueous Media: An Eco-Friendly Approach. J. Chem. Sci., 126(6), 1831-1840.
Li, M. L. Y., Hu, F., Ren, H., & Duan, E. (2021). Amino Acid-Based Natural Deep Eutectic Solvents for Extraction of Phenolic Compounds from Aqueous Environments. Processes, 9, 1716.
Lu, J., Yang, B., & Bai Y. (2002). Microwave irradiation synthesis of 2-substituted benzimidazoles using ppa as a catalyst under solvent-free conditions. Synth Comm., 32, 3703-3709.
Majid, M. H., Mahmood, T., Amir, N. A., & Bagher, M. (2006). Zeolites. Efficient and Eco-friendly Catalysts for the Synthesis of Benzimidazoles. Monatsh Chem., 137, 175-179.
Miller, J. F., Turner, E. M., Gudmundsson, K. S., Jenkinson, S., Spaltenstein, A., Thomson, M., & Wheelan, P. (2010). Novel N-substituted benzimidazole CXCR4 antagonists as potential anti-HIV agents. Bioorganic & Medicinal Chemistry Letters, 20, 2125-2128.
Moghaddam, F. M., Bardajee, G. R., Ismaili, H., & Taimoory S. M. D. (2006). Facile and Efficient One‐Pot Protocol for the Synthesis of Benzoxazole and Benzothiazole Derivatives using Molecular Iodine as Catalyst. Synth. Commun., 36, 2543-2548.
Nagawade, R. R., & Shinde, D. B. (2007). TiCl₄ Promoted synthesis of benzimidazole derivatives. Indian Journal of Chem 46b, 349-351.
Nguyen, H. T., & Pham, D. D. (2021). Tong hop dan xuat pyrano[3,2-c]quinoline dung xuc tac dieu che tu L-proline và acid p-toluenesulfonic [Synthesis of pyrano[3,2-c]quinoline derivatives using catalyst prepared from L-proline and p-toluenesulfonic acid]. Sci. Tech. Dev. J. - Nat. Sci., 5(3), 1275-1283.
Ozkay, Y., Tunali, Y., Karaca, H., & Isikdag I. (2010). Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazones moiety. Eur J Med Chem, 45(8), 3293-3298.
Reddy, M. V., Oh, J., & Jeong, Y. T. (2014). p-Toluenesulfonic acid-catalyzed one-pot synthesis of 2-amino-4-substituted-1,4-dihydrobenzo[4,5]imidazolo [1,2-a]pyrimidine-3-carbonitriles under neat conditions. C. R. Chimie, 17, 484-489.
Shitole, N. V., Niralwad, K. S., Shingate, B. B., & Shingare M. S. (2016). Synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles using chlorosulfonic acid at room temperature. Arabian Journal of Chemistry, 9(1), S858-S860.
Zhang, Z. H., Li, T. S., & Li J. J. (2007). A Highly Effective Sulfamic Acid/Methanol Catalytic System for the Synthesis of Benzimidazole Derivatives at Room Temperature. Monatsh Chem, 138, 89-94.