PARTICLE SIZE -DEPENDENT MAGNETIC PROPERTIES OF NANOFLUIDS BASED ON MAGNETITE NANOPARTICLES: A COMPUTER SIMULATION STUDY
Main Article Content
Abstract
Magnetic nanofluids are an outstanding candidate for biomedicine research. This is because their magnetic properties play a significant role in evaluating the effectiveness of clinical applications in biomedicine. Besides, that is influenced by many factors, the most important of which is particle size. In this article, we present a simulation study to assess the effect of particle size on the magnetic properties of magnetic fluids which contain the magnetite (Fe3O4) nanoparticles ensemble with their physical size variation between 2 nm and 20 nm (Critical size range for biomedical applications). These results show that the magnetic properties of microfluidics strongly depend on the size of the component nanoparticles. In addition, they are also compared with experimental results reported by other authors recently, showing good agreement and providing some valuable predictions.
Keywords
computer simulation, magnetic properties, nanofluids, particle size
Article Details
References
Andrievski, R. A., & Glezer, A. M. (2001). Size effects in properties of nanomaterials. Scripta materialia, 44(8-9), 1621-1624.
Arjmand, D., Poluektov, M., & Kreiss, G. (2018). Atomistic-continuum multiscale modelling of magnetisation dynamics at non-zero temperature. Advances in Computational Mathematics, 44(4), 1119-1151.
Bowden, G. J., Stenning, G. B. G., & Van der Laan, G. (2016). Inter and intra macro-cell model for point dipole–dipole energy calculations. Journal of Physics: Condensed Matter, 28(6), 066001.
Berkov, D. V. (2002). Fast switching of magnetic nanoparticles: Simulation of thermal noise effects using the Langevin dynamics. IEEE transactions on magnetics, 38(5), 2489-2495.
Dadwal, A., & Joy, P. A. (2020). Particle size effect in different base fluids on the thermal conductivity of fatty acid coated magnetite nanofluids. Journal of Molecular Liquids, 303, 112650.
Evans, R. F., Fan, W. J., Chureemart, P., Ostler, T. A., Ellis, M. O., & Chantrell, R. W. (2014). Atomistic spin model simulations of magnetic nanomaterials. Journal of Physics: Condensed Matter, 26(10), 103202.
Ganesan, V., Louis, C., & Damodaran, S. P. (2018). Novel nanofluids based on magnetite nanoclusters and investigation on their cluster size-dependent thermal conductivity. The Journal of Physical Chemistry C, 122(12), 6918-6929.
Gawali, S. L., Shelar, S. B., Gupta, J., Barick, K. C., & Hassan, P. A. (2021). Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application. International Journal of Biological Macromolecules, 166, 851-860.
Gilbert, T. L. (1955). A Lagrangian formulation of the gyromagnetic equation of the magnetization field. Phys. Rev., 100, 1243.
Gubernatis, J. E. (2005). Marshall Rosenbluth and the Metropolis algorithm. Physics of plasmas, 12(5), 057303.
García-Palacios, J. L., & Lázaro, F. J. (1998). Langevin-dynamics study of the dynamical properties of small magnetic particles. Physical Review B, 58(22), 14937.
Kappiyoor, R., Liangruksa, M., Ganguly, R., & Puri, I. K. (2010). The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia. Journal of Applied Physics, 108(9), 094702.
Kianfar, E. (2021). Magnetic nanoparticles in targeted drug delivery: a review. Journal of Superconductivity and Novel Magnetism, 34(7), 1709-1735.
Köseoglu, Y., & Kavas, H. (2008). Size and surface effects on magnetic properties of Fe3O4 nanoparticles. Journal of Nanoscience and Nanotechnology, 8(2), 584-590.
Kril, C. E., & Birringer, R. (1998). Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis. Philosophical Magazine A, 77(3), 621-640.
Li, Q., Kartikowati, C. W., Horie, S., Ogi, T., Iwaki, T., & Okuyama, K. (2017). Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Scientific reports, 7(1), 1-7.
Lue, J. T. (2007). Physical properties of nanomaterials. Encyclopedia of nanoscience and nanotechnology, 10(1), 1-46.
Ludwig, F., Eberbeck, D., Loewa, N., Steinhoff, U., Wawrzik, T., Schilling, M., & Trahms, L. (2013). Characterization of magnetic nanoparticle systems with respect to their magnetic particle imaging performance. Biomedizinische Technik/Biomedical Engineering, 58(6),
535-545.
Mamiya, H., Fukumoto, H., Cuya Huaman, J. L., Suzuki, K., Miyamura, H., & Balachandran, J. (2020). Estimation of magnetic anisotropy of individual magnetite nanoparticles for magnetic hyperthermia. ACS nano, 14(7), 8421-8432.
Ma, M., Wu, Y., Zhou, J., Sun, Y., Zhang, Y., & Gu, N. (2004). Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. Journal of Magnetism and Magnetic Materials, 268(1-2), 33-39.
Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., & Graves, S. M. (2006). Nanoemulsions: formation, structure, and physical properties. Journal of Physics: condensed matter,
18(41), R635.
Niculescu, A. G., Chircov, C., & Grumezescu, A. M. (2021). Magnetite nanoparticles: Synthesis methods–A comparative review. Methods.
Nithya, R., Thirunavukkarasu, A., Sathya, A. B., & Sivashankar, R. (2021). Magnetic materials and magnetic separation of dyes from aqueous solutions: A review. Environmental Chemistry Letters, 19, 1275-1294.
Paradezhenko, G. V., Yudin, D., & Pervishko, A. A. (2021). Random iron-nickel alloys: From first principles to dynamic spin fluctuation theory. Physical Review B, 104(24), 245102.
Upadhyay, S., Parekh, K., & Pandey, B. (2016). Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. Journal of Alloys and Compounds, 678, 478-485.
Wu, J., Pei, L., Xuan, S., Yan, Q., & Gong, X. (2016). Particle size dependent rheological property in magnetic fluid. Journal of Magnetism and Magnetic Materials, 408, 18-25.
Zhi, H., Ma, T., Pei, D., & Sun, H. (2020). A novel magnetic dipole inversion method based on tensor geometric invariants. AIP Advances, 10(4), 045131.