INVESTIGATION OF SOME CULTURE CONDITIONS AND NUTRITIONAL SOURCES AFFECTING THE BIOSYNTHESIS OF FIBRINOLYTIC ENZYME OF Bacillus sp. ES4
Main Article Content
Abstract
Bacillus sp. can biosynthesize fibrinolytic enzymes. Culture conditions and nutrient sources are important factors affecting microbial growth and production of the Fibrinolytic enzyme. Therefore, we investigated the culture conditions of the strain Bacillus sp. ES4, such as temperature, pH, C nutrient source (glucose, sucrose, glycerol, and maltose), N source (yeast extract, meat content, peptone, and tryptone), metal ions (Ca2+, Mg2+, Mn2+, Zn2+, K+, Fe2+, and Cu2+), and time to obtain enzyme product. The results show that for Bacillus sp. ES4, the best C source was glucose, peptone and yeast extract. Ca2+ and Mg2+ are nutritional factors that greatly influence the biosynthesis of the fibrinolytic enzyme of strain ES4. At the culture conditions of 370C and pH = 6.5, the strains for the best enzyme activity at 24 hours and the enzyme activity of the strain when cultured in a 250 ml flask containing 50 ml of medium for the highest enzyme activity at 450±25. FU/ml.
Keywords
Bacillus sp, culture conditions, enzyme production, fibrinolytic enzyme, optimal nutrient medium
Article Details
References
Agrebi, R., Haddar, A., Hajji, M., Frikha, F., Manni, L., Jellouli, K., & Nasri, M. (2009). Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26: characterization and statistical media optimization. Can. J. Microbiol, 55, 1049-1061. 10.1139/w09-057
Dinh, B. Q. A., Nguyen, M., Do. N. A. H., & Pham, V. H. (2015). Isolation and Optimization of Growth Condition of Bacillus sp. from Fermented Shrimp Paste for High Fibrinolytic Enzyme Production. Arabian Journal for Science and Engineering, 40, 23-28. 10.1007/s13369-014-1506-8.
Bui, T. T., Dam, T. H., Pham, T. A., & Nguyen, L. H. (2022). Enhanced Production of Fibrinolytic Enzyme by Bacillus sp. Isolated from Vietnamese Traditional Fermented Soybean (Tuong ban) using Ultraviolet Irradiation and Chemical Mutation. Int.J.Curr.Microbiol.App.Sci, 11, 67-80. doi: 10.20546/ijcmas.2022.1105.010
Chantawannakul, P., Oncharoen, A., Klanbut, K., Chukeatirote, E., & Lumyong, S. (2002). Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand. Science Asia, 28, 241-245.
Chen, J. H. B., Zhengbo, H., Qiyi, H., Youjin, H., & Chen, Z. (2013). Isolation and identification of an effective fibrinolytic strain Bacillus subtilis FR-33 from the Chinese doufuru and primary analysis of its fibrinolytic enzyme. African Journal of Microbiology Research, 7, 2001-2009. 10.5897/AJMR12.282
Cui. L, Chen, X. C., Jiang, M., Xin, L., & Guijun, Y. (2008). A novel fibrinolytic enzyme from Cordyceps militaris, a Chinese traditional medicinal mushroom. World J Microbiol Biotechnol, 24, 483-489. DOI 10.1007/s11274-007-9497-1
Cui, W., Suo, F., Cheng, J., Han, L., Hao, W., & Guo, J. (2018). Stepwise modifications of genetic parts reinforce the secretory production of nattokinase in Bacillus subtilis. Microbial Biotechnology, 11, doi: 10.1111/1751-7915.13298.
Deepak, V., Kalishwaralal, K., Ramkumarpandian, S., Venkatesh, B. S., Senthilkumar, S. R., & Sangiliyandi, G. (2008). Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technology, 99,
8170-8174.
Do. N. A. H., Pham, A. H., & Pham, V. H. (2016). Screening and identification of Bacillus sp. isolated from traditional Vietnamese soybean-fermented products for high fibrinolytic enzyme production. International Food Research Journal, 23, 326-331.
Eldeen, K. I., Elrashied, E. E., & Hassan, B. E. (2015). Optimization of Culture Conditions to Enhance Nattokinase Production Using RSM. American Journal of Microbiological Research, 3, 165-170. 10.12691/ajmr-3-5-3.
Fathma S., Narwastu, P., Puspo, E. G., Raymond, R. T., & Maggy, T. S.(2020). Fibrinolytic bacteria of Indonesian fermented soybean: preliminary study on enzyme activity and protein profile. Food Sci. Technol, Campinas, 40, 458-465. 10.1590/fst.23919.
Hu, Y., Yu, D., Zhaoting Wang, Z., Jianjun, H., Tyagi, R., Yunxiang, L. & Yongmei, H. (2019). Purification and characterization of a novel, highly potent fibrinolytic enzyme from Bacillus subtilis DC27 screened from Douchi, a traditional Chinese fermented soybean food. Scientific reports, 9, 9235-9235. doi: 10.1038/s41598-019-45686-y
Jeong, W. J., Lee, A. R., Chun, J. Y., Cha, J. H., Song, Y. S., & Kim, J. H. (2009). Properties of cheonggukjang fermented with Bacillus strains with high fibrinolytic activities. Preventive Nutrition and Food Science, 14, 252-259.
Ju, S., Cao, Z., Wong, C., Liu, Y., Foda, M. F., & Zhang Z. (2019). Isolation and Optimal Fermentation Condition of the Bacillus subtilis Subsp. natto Strain WTC016 for Nattokinase Production. Fermentation, 5, p. 92.
Junguo, L., Chang, T., Zhiya, M., & Huizhou, L. (2005). Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods. Process, 40, 2757-2762. 10.1016/j.procbio.2004.12.025
Kwon, E. Y.,Kim, K. M., Kim, M. K., Lee, I. Y., & Kim, B. S. (2011). Production of nattokinase by high cell density fed-batch culture of Bacillus subtilis. Bioprocess and biosystems engineering, 34, 789-793.
Mahajan, P. M., Sagar, V. G., & Smita, S. L. (2010). Production of nattokinase using Bacillus natto NRRL 3666: Media optimization, scale up, and kinetic modeling. Food Science and Biotechnology, 19, 1593-1603. doi: 10.1007/s10068-010-0226-4
Naga, R. N., & Divakar, G. (2014). An overview on microbial fibrinolytic protease. International Journal of Pharmaceutical Sciences and Research, 5(3), 643-656. doi: 10.13040/IJPSR.0975-8232
Nascimento, T. P., Amanda, E. S., Porto, C. S., Romero, M. P. B., Galba, M. C. T., & Porto, A. L. F. (2015) Production and characterization of new fibrinolytic protease from Mucor subitillissimus UCP 1262 in solid-state fermentation. Advances in Enzyme Research, 3, 81-91.
Nguyen, N. H., & Nguyen, T. H. (2016). Optimization Of The Possibility Synthetic Nattokinase In Soybean Substrates To Orientation Products Development. International Journal of Pharmaceutical Science Invention, 5, 35-41.
Nguyen, Q. U., Nguyen, H. N., Phan, T. H., & Nguyen, H. M. Q (2015). Buoc dau nghien cuu nattokinase cua chung vi khuan Bacillus sp. phan lap tu nem chua [The first research on nattokinase of Bacillus sp. isolated from Nem Chua]. Journal of Biology, 37, 129-133. 10.15625/0866-7160/v37n1se
Nguyen, A. T., Dinh, T. H. T., Tran, T. M. T, & Nguyen, T. H. (2015). Determination the optimum fermentation in obtaining nattokinase by Bacillus subtilis natto. International Journal of Innovation and Applied Studies, 13, 663-668.
Nguyen, T. A. T., Nguyen, T. M. K., Nguyen, D. H., Nguyen, Q. D. T., & Nguyen, H. L. (2020). Characterizations and fibrinolytic activity of serine protease from Bacillus subtilis C10. Current Pharmaceutical Biotechnology, 21, 110-116.
Ping, X., Yao, S. P., Liu, J. F., Ying, M., & Wang, Y. P. (2015). Enhanced Production of Fibrinolytic Enzyme from Bacillus amyloliquefaciens CGMCC 7380 Using Broad Bean as Substrate. Advance Journal of Food Science and Technology, 9, 832-839. doi: 10.19026/ajfst.9.1639
Salunke., A. S., & Arun, S. K. (2019). Data on isolation and purification of fibrinolytic enzyme from Pseudomonas baetica SUHU25. Data in Brief, 26, doi.org/10.1016/j.dib.2019.104369
Sharma. D., Shekhar, S., Kumar, A., & Godheja, J. (2020). Isolation, characterization, production and purification of fibrinolytic enzyme nattokinase from Bacillus subtilis. IJPSR, 31, 1768-1776. doi.org/10.13040/IJPSR.0975-8232
Singh, P., Negi, R., Sharma, V., Rani, A., Pallavi, & Prasad, R. (2018). Production of fibrinolytic enzyme (Nattokinase) from Bacillus sp. Indo American Journal of Pharmaceutical Sciences, 5, 379-383. doi.org/10.5281/zenodo.1155529
Smitha, K. V., & Pradeep, B. V. (2018). Optimization of Physical and Cultural Conditions of Fibrinolytic Enzyme from Bacillus altitudinis S-CSR 0020. Journal of Pure and Applied Microbiology, 12, 343-354. doi: 10.22207/JPAM.12.1.40
Sumi, H., Hamada, H., Tsushima, H., Mihara, H., & Muraki, H. (1987). A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto; a typical and popular soybean food in the Japanese diet Experientia., 43, 1110-1111. http:doi:10.1007/BF01956052
Unrean. P., Nguyen, N. H. A., Visessanguan, W. & Kitsubun, P. (2012). Improvement of nattokinase production by Bacillus subtilis using an optimal feed strategy in fed-batch fermentation. KKU Res. J, 17, 769-777.
Vijayaraghavan, P. P. R., Samuel, G. P. V., Arumugaperumal, A., Naif, A. A. D., Mariadhas, V. A., Oh, Y. K., & Kim, Y. O. (2017). Novel Sequential Screening and Enhanced Production of Fibrinolytic Enzyme by Bacillus sp. IND12 Using Response Surface Methodology in Solid-State Fermentation. BioMed Research International, 2017, 1-13. doi: 10.1155/2017/3909657
Vijayaraghavan. P., & Samuel, G. P. V. (2014). Statistical Optimization of Fibrinolytic Enzyme Production Using Agroresidues by Bacillus cereus IND1 and Its Thrombolytic Activity In Vitro. BioMed research international, 2014, 725064. doi: 10.1155/2014/725064
Wang. J. K, Hua, H. C., & Ching, S. H. (2009). Optimization of the medium components by statistical experimental methods to enhance Nattokinase activity. Fooyin Journal of Health Sciences, 1, 2127. 10.1016/S1877-8607(09)60004-7
Wang. S. H, Zhang, C., Yang, Y. L., & Diao, M. (2008). Screening of a high fibrinolytic enzyme producing strain and characterization of the fibrinolytic enzyme produced from Bacillus subtilis LD-8547. World Journal of Microbiology and Biotechnology, 24, 475-482. 10.1007/s11274-007-9496-2
Weng, Y., Yao, J., Sparks, S., & Wang, K. Y. (2017). Nattokinase: An Oral Antithrombotic Agent for the Prevention of Cardiovascular Disease. International Journal of Molecular Sciences, 18, 523. doi: 10.3390/ijms18030523
Wu, R., Chen, G., Pan, S., Zeng, J., & Liang, Z. (2019). Cost-effective fibrinolytic enzyme production by Bacillus subtilis WR350 using medium supplemented with corn steep powder and sucrose. Scientific Reports, 9.
Yanti (2018). Screening, Purification, and Characterization of Fibrinolytic Enzyme-Producing Bacteria from Indonesian Fermented Foods. Scholars Academic Journal of Biosciences, 6, 598-605. http:doi.10.21276/sajb.2018.6.8.7
Yogesh, D., & Halami, P. M. (2017). Fibrinolytic enzymes of Bacillus spp.: An overview. International Food Research Journal, 24, 35-47.
Zhuang, Y., Yu, M., Le, H. G., Lee, S. J., Hye, S. J., Ji, Y. Y., Diana, N. A., & Kim, J. H. (2020). Isolation of 2 Bacillus Strains with Strong Fibrinolytic Activities from Kimchi. Microbiol. Biotechnol. Lett., 48, 439-446. 10.48022/mbl.2003.03008
Zu, X. Y., Zhang, Z. Y., Yang, Y. N., Che, H. T., Zhang, G. H., & Li, J. (2010). Thrombolytic activities of nattokinase extracted from Bacillus subtilis fermented soybean curd residues. Int. J. Biol. 2, 120-125.