PROBING THE CATALYTIC PERFORMANCE IN 4-NITROPHENOL REDUCTION OF TWO LANTHANIDE METAL-ORGANIC FRAMEWORKS

Thanh Bình Nguyễn , Hoàng Gia Khánh Nguyễn

Main Article Content

Abstract

The discharge of 4-nitrophenol (4-NP) into natural water has prompted scientific efforts for remediation. Many effective catalysts have been proposed to reduce 4-NP using sodium borohydride, highlighting factors like robust Lewis acidity, π-conjugate systems, and water stability to enhance 4-NP decomposition. To test whether these factors are sufficient to explain the catalytic performance of materials, two metal-organic frameworks (MOFs) that fulfilled these criteria were employed to catalyze the 4-NP reduction. We synthesized two Ln-MOF-589 (Ln = Ce, La) via a reported procedure and confirmed their identity using PXRD, SEM, IR, and TGA. Contrary to expectation, their catalytic performance in reducing 4-nitrophenol with sodium borohydride exhibited low efficiency, indicating that the presence of Lewis acid or π system is insufficient to predict the catalytic activities. Still, additional factors such as metal-linker collaboration, framework-embedded metal acidity, and structural porosity should also be considered. This result underscored the need to explore lanthanide-based MOFs and carbonized Ln-MOF-589 further to unravel the catalytic mechanisms involving metal-organic frameworks, particularly in 4-NP decomposition.

Article Details

Author Biography

Thanh Bình Nguyễn,

Hóa học

References

Abdelbasir, S. M., & Shalan, A. E. (2019). An overview of nanomaterials for industrial wastewater treatment. Korean Journal of Chemical Engineering, 36(8), 1209-1225. https://doi.org/10.1007/s11814-019-0306-y
Agency for Toxic Substances and Disease Registry. (2023). Toxicological Profile for Nitrophenols.
Ahsan, M. A., Jabbari, V., El-Gendy, A. A., Curry, M. L., & Noveron, J. C. (2019). Ultrafast catalytic reduction of environmental pollutants in water via MOF-derived magnetic Ni and Cu nanoparticles encapsulated in porous carbon. Applied Surface Science, 497, 143608. https://doi.org/10.1016/j.apsusc.2019.143608
Ahsan, Md. A., Deemer, E., Fernandez-Delgado, O., Wang, H., Curry, M. L., El-Gendy, A. A., & Noveron, J. C. (2019). Fe nanoparticles encapsulated in MOF-derived carbon for the reduction of 4-nitrophenol and methyl orange in water. Catalysis Communications, 130, 105753. https://doi.org/10.1016/j.catcom.2019.105753
Ahsan, Md. A., Fernandez-Delgado, O., Deemer, E., Wang, H., El-Gendy, A. A., Curry, M. L., & Noveron, J. C. (2019). Carbonization of Co-BDC MOF results in magnetic C@Co nanoparticles that catalyze the reduction of methyl orange and 4-nitrophenol in water. Journal of Molecular Liquids, 290, 111059. https://doi.org/10.1016/j.molliq.2019.111059
Al Kobaisi, M., Bhosale, S. V., Latham, K., Raynor, A. M., & Bhosale, S. V. (2016). Functional Naphthalene Diimides: Synthesis, Properties, and Applications. Chemical Reviews, 116(19), 11685-11796. https://doi.org/10.1021/acs.chemrev.6b00160
Dang, G. H., Tran, Y. B. N., Pham, T. V., Pham, V. T., Luu, N. T. H.,… Truong, T. (2019). A Cerium-Containing Metal-Organic Framework: Synthesis and Heterogeneous Catalytic Activity toward Fenton-Like Reactions. ChemPlusChem, 84(8), 1046-1051. https://doi.org/10.1002/cplu.201900325
Din, M. I., Khalid, R., Hussain, Z., Hussain, T., Mujahid, A., Najeeb, J., & Izhar, F. (2020). Nanocatalytic Assemblies for Catalytic Reduction of Nitrophenols: A Critical Review. Critical Reviews in Analytical Chemistry, 50(4), 322-338. https://doi.org/10.1080/10408347.2019.1637241
D’Vries, R. F., Iglesias, M., Snejko, N., Alvarez-Garcia, S., Gutiérrez-Puebla, E., & Monge, M. A. (2012). Mixed lanthanide succinate–sulfate 3D MOFs: catalysts in nitroaromatic reduction reactions and emitting materials. J. Mater. Chem., 22(3), 1191-1198. https://doi.org/10.1039/C1JM14677G
Fukuzumi, S., Jung, J., Lee, Y., & Nam, W. (2017). Effects of Lewis Acids on Photoredox Catalysis. Asian Journal of Organic Chemistry, 6(4), 397–409. https://doi.org/10.1002/ajoc.201600576
Hu, Z., & Zhao, D. (2017). Metal–organic frameworks with Lewis acidity: synthesis, characterization, and catalytic applications. CrystEngComm, 19(29), 4066-4081. https://doi.org/10.1039/C6CE02660E
Keerthana, M., Pushpa Malini, T., & Sangavi, R. (2022). Efficiency of cerium oxide (CeO2) nano-catalyst in degrading the toxic and persistent 4-nitrophenol in aqueous solution. Materials Today: Proceedings, 50, 375-379. https://doi.org/10.1016/j.matpr.2021.10.082
Kharissova, O. V., Kharisov, B. I., Ulyand, I. E., & García, T. H. (2020). Catalysis using metal–organic framework-derived nanocarbons: Recent trends. Journal of Materials Research, 35(16), 2190–2207. https://doi.org/10.1557/jmr.2020.166
Liu, J., Yu, H., & Wang, L. (2020). Effective reduction of 4-nitrophenol with Au NPs loaded ultrathin two dimensional metal-organic framework nanosheets. Applied Catalysis A: General, 599, 117605. https://doi.org/10.1016/j.apcata.2020.117605
Liu, Y., Wang, Y., Yan, H., Liu, H., Guo, W., Wang, S., Gao, Z., Li, X., Zhu, H., Hao, H., Zhang, D., & Dai, F. (2022). Series of Stable Anionic Lanthanide Metal–Organic Frameworks as a Platform for Pollutant Separation and Efficient Nanoparticle Catalysis. Inorganic Chemistry, 61(8), 3472-3483. https://doi.org/10.1021/acs.inorgchem.1c03400
Mandlimath, T. R., & Gopal, B. (2011). Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol. Journal of Molecular Catalysis A: Chemical, 350(1-2), 9-15. https://doi.org/10.1016/j.molcata.2011.08.009
Mejía, Y. R., & Reddy Bogireddy, N. K. (2022). Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. RSC Advances, 12(29), 18661-18675. https://doi.org/10.1039/D2RA02663E
Nguyen, H. T. D., Tran, Y. B. N., Nguyen, H. N., Nguyen, T. C., Gándara, F., & Nguyen, P. T. K. (2018). A Series of Metal-Organic Frameworks for Selective CO2 Capture and Catalytic Oxidative Carboxylation of Olefins. Inorganic Chemistry, 57(21), 13772-13782. https://doi.org/10.1021/ACS.INORGCHEM.8B02293
Panda, J., Biswal, S. P., Jena, H. S., Mitra, A., Samantray, R., & Sahu, R. (2022). Role of Lewis Acid Metal Centers in Metal–Organic Frameworks for Ultrafast Reduction of 4-Nitrophenol. Catalysts, 12(5), 494. https://doi.org/10.3390/catal12050494
Ravi, G., Sarasija, M., Ayodhya, D., Kumari, L. S., & Ashok, D. (2019). Facile synthesis, characterization and enhanced catalytic reduction of 4-nitrophenol using NaBH4 by undoped and Sm3+, Gd3+, Hf3+ doped La2O3 nanoparticles. Nano Convergence, 6(1), 12. https://doi.org/10.1186/s40580-019-0181-6
She, W., Qi, T., Cui, M., Yan, P., Ng, S. W., Li, W., & Li, G. (2018). High Catalytic Performance of a CeO 2 -Supported Ni Catalyst for Hydrogenation of Nitroarenes, Fabricated via Coordination-Assisted Strategy. ACS Applied Materials & Interfaces, 10(17). https://doi.org/10.1021/acsami.8b01187
Sun, H., Ge, F., Zhao, J., & Cai, Z. (2016). Template-directed synthesis of hierarchically mesporous superparamagnetic carbon-coated nickel nanoplates. Materials Letters, 164, 152-155. https://doi.org/10.1016/j.matlet.2015.10.054
Teimouri, M., Khosravi-Nejad, F., Attar, F., Saboury, A. A., Kostova, I., Benelli, G., & Falahati, M. (2018). Gold nanoparticles fabrication by plant extracts: synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity – A review. Journal of Cleaner Production, 184, 740–753. https://doi.org/10.1016/j.jclepro.2018.02.268
Tran, Y. B. N., & Nguyen, P. T. K. (2021). Lanthanide metal–organic frameworks for catalytic oxidation of olefins. New Journal of Chemistry, 45(4), 2090–2102. https://doi.org/10.1039/D0NJ05685E
Wu, T., Zhang, L., Gao, J., Liu, Y., Gao, C., & Yan, J. (2013). Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. Journal of Materials Chemistry A, 1(25), 7384. https://doi.org/10.1039/c3ta10684e
Wu, X., & Yeow, E. K. L. (2022). Exploiting the upconversion luminescence, Lewis acid catalytic and photothermal properties of lanthanide-based nanomaterials for chemical and polymerization reactions. Physical Chemistry Chemical Physics, 24(19), 11455-11470. https://doi.org/10.1039/D2CP00560C
Zakaria, M. A., Menazea, A. A., Mostafa, A. M., & Al-Ashkar, E. A. (2020). Ultra-thin silver nanoparticles film prepared via pulsed laser deposition: Synthesis, characterization, and its catalytic activity on reduction of 4-nitrophenol. Surfaces and Interfaces, 19, 100438. https://doi.org/10.1016/j.surfin.2020.100438
Zhang, Y., Liu, S., Zhao, Z. S., Wang, Z., Zhang, R., Liu, L., & Han, Z. B. (2021). Recent progress in lanthanide metal-organic frameworks and their derivatives in catalytic applications. In Inorganic Chemistry Frontiers (Vol. 8, Issue 3, pp. 590–619). Royal Society of Chemistry. https://doi.org/10.1039/d0qi01191f