ENERGIES AND DIAMAGNETIC COEFFICIENTS OF EXCITON IN MONOLAYER WSe2

Duy Nhất Lý , Nhật Quang Nguyễn , Phước Thiện Đoàn , Ngọc Hưng Phan , Văn Hoàng Lê

Main Article Content

Abstract

Two-dimensional exciton under a uniform magnetic field in monolayer transition-metal dichalcogenides (TMDCs) has been a fascinating problem for experimental and theoretical studies in the last decade due to its practical applications in electronic and optics devices. Specifically, there is significant interest in the diamagnetic coefficients of excitons in monolayer TMDCs, focusing on the monolayer WSe2 encapsulated by boron nitride (h-BN). The discrepancy between theoretical calculations and experimental data for the diamagnetic coefficient of an exciton in monolayer TMDCs requires further improvement in theory for this material property. This paper uses the so-called modulated perturbation method by combining the Rayleigh-Schrӧdinger perturbation theory with the Levi-Civita transformation and including a variational parameter. The advantage of the constructed method is demonstrated in calculating the exciton diamagnetic coefficient within the second order of approximation. The results are then compared with recent experimental ones.

 

Article Details

References

Berkelbach, T. C., Hybertsen, M. S., & Reichman, D. R. (2013). Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Physical Review B 88, Article 045318. https://doi.org/10.1103/PhysRevB.88.045318
Feranchuk, I., Ivanov, A., Le, V. H., & Ulyanenkov, A. (2015). Non-perturbative Description of Quantum Systems (Vol. 894). Springer International Publishing. https://doi.org/10.1007/978-3-319-13006-4
Hoang, D. N. T. (2016). The FK operator method for two-dimensional sextic double well oscillator. Ho Chi Minh City University of Education Journal of Science, 6(84), 5-11. https://doi.org/10.54607/hcmue.js.0.6(84).1349(2016)
Hoang, D. N. T., Pham, D. L., & Le, V. H. (2013). Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength. Physica B: Condensed Matter, 423, 31-37. https://doi.org/10.1016/j.physb.2013.04.040
Keldysh, L. V. (1979). Coulomb interaction in thin semiconductor and semimetal films. JETP Lett., 29(11), p.658.
Kutner, M., Nachtsheim, C., & Li, W. (2005). Chapter 1: Linear Regression with One Predictor Variable, and Chapter 13: Introduction to Nonlinear Regression and Neural Networks. In Applied Linear Statistical Models (5th ed., pp. 1-45, 495-533). McGraw-Hill. https://doi.org/10.1080/00224065.1997.11979760
Levi-Civita, T. (1956). Opere Metematiche. Memorie e Note (Vol. II: 1901-1907). Nicola Zanichelli Editore.
Liu, E., van Baren, J., Taniguchi, T., Watanabe, K., Chang, Y.-C., & Lui, C. H. (2019). Magnetophotoluminescence of exciton Rydberg states in monolayer WSe₂. Physical Review B, 99(20), Article 205420. https://doi.org/10.1103/PhysRevB.99.205420
Ly, D. N., Huynh, N. T. T., Nguyen, L. H. M, Nguyen, N. Q., Doan, P. T., & Phan, N. H. (2022). Regulated perturbation theory for neutral exciton energy in a uniform magnetic field. Ho Chi Minh City University of Education Journal of Science, 19(3), 399-410. https://doi.org/10.54607/hcmue.js.19.3.3363(2022)
Ly, D. N., Le, D. N., Phan, N. H., & Le, V. H. (2023). Thermal effect on magnetoexciton energy spectra in monolayer transition metal dichalcogenides. Physical Review B, 107, Article 155410. https://doi.org/10.1103/PhysRevB.107.155410
Stier, A. V., Wilson, N. P., Velizhanin, K.A., Kono, J., Xu, X., & Crooker, S. A. (2018). Magnetooptics of Exciton Rydberg States in a Monolayer Semiconductor. Physical Review Letters, 120, Article 057405. https://doi.org/10.1103/PhysRevLett.120.057405
Thambiratnam, K., Reduan, S. A., Tiu, Z. C., & Ahmad, H. (2020). Chapter 9 - Application of Two-Dimensional Materials in Fiber Laser Systems. In Nano-Optics, Micro and Nano Technologies (pp. 227-264). Elsevier. https://doi.org/10.1016/B978-0-12-818392-2.00009-3