SYNTHESIS OF MNO2/CARBON AEROGEL MATERIALS AND THEIR APPLICATION IN ELECTROCHEMICAL SUPERCAPACITORS AND CAPACITIVE DEIONIZATION (CDI) TECHNOLOGY

Thị Thu Trang Nguyễn , Thị Diệu My Phan , Minh Đại Tô , Lê Thanh Nguyên Huỳnh , Thái Hoàng Nguyễn

Main Article Content

Abstract

Capacitive deionization (CDI) technology has been increasingly grown in its application to desalinate drinking water. The electrode material possesses a structurally appropriate composition that enhances salt adsorption, commonly referred to as salt adsorption capacity (SAC). The MnO2 compound is potentially an oxide material for capacitive deionization (CDI) technology due to its exceptional electrochemical properties, cost-effectiveness, and environmentally sustainable characteristics. This study involved the synthesis of MnO2/carbon aerogel (MnO2/CA) using the sol-gel method. The shape of the material was assessed using scanning electron microscopy (SEM), while the structure of the material was characterized using X-ray diffraction (XRD) and Raman scattering spectroscopy. The MnO2/CA composite material, which has been synthesized with a high level of purity and a porous structure, exhibits enhanced charge and ion conduction properties. This characteristic leads to a reduction in system resistance, hence enabling the potential application of this material in Capacitive Deionization (CDI) technology. The study examined the salt adsorption capacity of the material under the conditions of a 200 ppm NaCl solution and a voltage of 1.4 V. The results indicate that the material achieved a maximum salt adsorption capacity of 25.4 mg/g. The findings demonstrate the potential of MnO2/CA composite materials as viable electrode materials in Capacitive Deionization (CDI) technology.

 

 

Article Details

References

Chen, F., Huang, Y., Guo, L., Sun, L., Wang, Y., & Yang, H. Y. (2017). Dual-ions electrochemical deionization: a desalination generator. Energy & Environmental Science, 10(10), 2081-2089. https://doi.org/10.1039/c7ee00855d
Fang, B., Wei, Y. Z., Maruyama, K., & Kumagai, M. (2005). High capacity supercapacitors based on modified activated carbon aerogel. Journal of Applied Electrochemistry, 35(3), 229-233. https://doi.org/10.1007/s10800-004-3462-6/metrics
Jaoude, M. A., Alhseinat, E., Polychronopoulou, K., Bharath, G., Darawsheh, I. F. F., Anwer, S., Baker, M. A., Hinder, S. J., & Banat, F. (2020). Morphology-dependent electrochemical performance of MnO2 nanostructures on graphene towards efficient capacitive deionization. Electrochimica Acta, 330, Article 135202. https://doi.org/10.1016/j.electacta.2019.135202
Kalpana, D., Omkumar, K. S., Kumar, S. S., & Renganathan, N. G. (2006). A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochimica Acta, 52(3), 1309-1315. https://doi.org/10.1016/j.electacta.2006.07.032
Khamsanga, S., Pornprasertsuk, R., Yonezawa, T., Mohamad, A. A., & Kheawhom, S. (2019). δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries. Scientific Reports 2019, 9(1), Article 8441. https://doi.org/10.1038/s41598-019-44915-8
Kim, B. K., Sy, S., Yu, A., & Zhang, J. (2015). Electrochemical Supercapacitors for Energy Storage and Conversion. In Handbook of Clean Energy Systems (pp. 1-25). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118991978.hces112
Kim, S. J., Hwang, S. W., & Hyun, S. H. (2005). Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. Journal of Materials Science, 40(3), 725-731. https://doi.org/10.1007/s10853-005-6313-x/metrics
Lee, J. H., & Park, S. J. (2020). Recent advances in preparations and applications of carbon aerogels: A review. In Carbon (Vol. 163, pp. 1-18). Elsevier Ltd. https://doi.org/10.1016/j.carbon.2020.02.073
Li, J., Wang, X., Huang, Q., Dai, C., Gamboa, S., & Sebastian, P. J. (2007). Preparation and characterization of RuO2•xH2O/carbon aerogel composites for supercapacitors. Journal of Applied Electrochemistry, 37(10), 1129-1135. https://doi.org/10.1007/s10800-007-9372-7/metrics
Li, J., Wang, X., Huang, Q., Gamboa, S., & Sebastian, P. J. (2006a). A new type of MnO2•xH2O/CRF composite electrode for supercapacitors. Journal of Power Sources, 160(2 SPEC. ISS.), 1501-1505. https://doi.org/10.1016/j.jpowsour.2006.02.045
Li, J., Wang, X., Huang, Q., Gamboa, S., & Sebastian, P. J. (2006b). Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. Journal of Power Sources, 158(1), 784-788. https://doi.org/10.1016/j.jpowsour.2005.09.045
Li, Q., Zheng, Y., Xiao, D., Or, T., Gao, R., Li, Z., Feng, M., Shui, L., Zhou, G., Wang, X., & Chen, Z. (2020). Faradaic Electrodes Open a New Era for Capacitive Deionization. Advanced Science, 7(22), Article 2002213. https://doi.org/10.1002/advs.202002213
Lv, G., Wu, D., & Fu, R. (2009). Preparation and electrochemical characterizations of MnO2-dispersed carbon aerogel as supercapacitor electrode material. Journal of Non-Crystalline Solids, 355(50-51), 2461-2465. https://doi.org/10.1016/j.jnoncrysol.2009.08.035
Oren, Y. (2008). Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination, 228(1-3), 10-29. https://doi.org/10.1016/j.desal.2007.08.005
Porada, S., Shrivastava, A., Bukowska, P., Biesheuvel, P. M., & Smith, K. C. (2017). Nickel Hexacyanoferrate Electrodes for Continuous Cation Intercalation Desalination of Brackish Water. Electrochimica Acta, 255, 369-378. https://doi.org/10.1016/j.electacta.2017.09.137
Quan, X., Fu, Z., Yuan, L., Zhong, M., Mi, R., Yang, X., Yi, Y., & Wang, C. (2017). Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes. RSC Advances, 7(57), 35875-35882. https://doi.org/10.1039/c7ra05226j
Roychaudhuri, R., Acharyya, D., & Bhattacharyya, P. (2018). Morphological evolution of MnO2 based nanostructures by tuning the reaction time. In 2018 International Symposium on Devices, Circuits and Systems (ISDCS) (pp. 1-4). Howrah, India. https://doi.org/10.1109/ISDCS.2018.8379628
Saliger, R., Fischer, U., Herta, C., & Fricke, J. (1998). High surface area carbon aerogels for supercapacitors. Journal of Non-Crystalline Solids, 225(1-3), 81-85. https://doi.org/10.1016/s0022-3093(98)00104-5
Srimuk, P., Kaasik, F., Krüner, B., Tolosa, A., Fleischmann, S., Jäckel, N., Tekeli, M. C., Aslan, M., Suss, M. E., & Presser, V. (2016). MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. Journal of Materials Chemistry A, 4(47), 18265-18271. https://doi.org/10.1039/C6TA07833H
Sun, Z., Fu, J., Pan, D., Bai, H., Liu, P., Li, Y., Tong, T., Hou, B., & Wang, Y. (2022). Mno2/Mxene Composites as Electrodes for Capacitive Deionization with Fast and Ultrahigh Desalination Capacity. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4281027
Tang, W., Liang, J., He, D., Gong, J., Tang, L., Liu, Z., Wang, D., & Zeng, G. (2019). Various cell architectures of capacitive deionization: Recent advances and future trends. In Water Research (Vol. 150, pp. 225-251). Elsevier Ltd. https://doi.org/10.1016/j.watres.2018.11.064
Toupin, M., Brousse, T., & Bélanger, D. (2004). Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemistry of Materials, 16(16), 3184-3190.
Wu, T., Wang, G., Wang, S., Zhan, F., Fu, Y., Qiao, H., & Qiu, J. (2018). Highly Stable Hybrid Capacitive Deionization with a MnO2 Anode and a Positively Charged Cathode. Environmental Science and Technology Letters, 5(2), 98-102.