A STUDY OF ON PROCESSING PRODUCING THE SUPERCRITICAL CO2 EXTRACTION FROM JIAOGULAN (Gynostemma pentaphyllum)

Châu Anh Nguyễn , Quang Thắng Phạm , Thị Thu Thảo Vũ , Quỳnh Trân Trương , Thị Yến Thu Đặng , Thị Hà Vân Phạm

Main Article Content

Abstract

To get the value of Jiaogulan, we researched supercritical CO2 extraction to diversify medical products for health. The material was treated by freeze-drying at a temperature of 300 C and a humidity of 9% to get high sensory quality. The optimization of saponin was carried out at a temperature of 500 C, pressure of 300,5 bar, and extraction time of 120 minutes. The antioxidant activity of the extract by the SFE-CO2 method was significantly high, with the inhibited capacity DPPH, hydroxyl, chelated Fe2+ (IC50 = 0,38 ± 0,01 mg/ml, 1,57± 0,07 mg/ml, 1,16 ± 0,05 mg/ml). The extract has low color change and retains its characteristic flavor and medicinal properties (saponins and polyphenols) during storage for three months at room temperature (28 ± 20 C, a humidity of 60 ± 5%).

 

Article Details

Author Biography

Châu Anh Nguyễn,

Phòng nghiên cứu Công nghệ Sinh học và Thủy sản

References

Chien, H. C., Adam, F., Chung, L. L., & Aneta, W. (2014). Combined Drying of Apple Cubes by Using of Heat Pump, Vacuum-Microwave, and Intermittent Techniques. Food and bioprocess technology, 7, 975-989. http://dx.doi.org/10.1007/s11947-013-1123-7
Khaw, Y-K., Parat, O-M., Shaw, N. P., & Falconer, R. J. (2017). Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. Molecules, 22(7), Article 1186. https://doi.org/10.3390/molecules22071186
Lai, Q. D., & Nguyen, C. K. (2016). Xu huong ung dung cong nghe say tien tien trong bao quan va che bien nong san, thuy san [The applying of advanced drying technology in preservation and processing agricultural, aquatic products]. Center for Statistics and Science and Technology Information.
Li, B., Zhang, X., Wang, M., & Jiao, L. (2015). Characterization and antioxidant activities of acidic polysaccharides from Gynostemma pentaphyllum (Thunb.) Markino. Carbohydrate Polymers, 127, 209-214. https://doi.org/10.1016/j.carbpol.2015.03.069
Lu, J. M., Hin, H. P., Yao, Q., & Chen, C. (2010). Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. Molecular medicine, 14(4),
840-860. https://doi.org/10.1111/j.1582-4934.2009.00897.x
Prasertsan, S., & Saensaby, P. (2010). Heat Pump drying of agricultural materials. Drying Technology, 16(1-2), 235-250. https://doi.org/10.1080/07373939808917401
Sihvonen, M., Jarvenpaa, E., Hietaniemi, V., & Huopalahti, R. (1999). Advances in supercritical carbon dioxide technology. Food science and Technology, 10, 217-222. https://doi.org/10.1016/S0924-2244(99)00049-7
Tadhani, M., & Subhash, R. (2006). Preliminary studies on Stevia rebaudiana leaves: Proximal composition, mineral analysis and phytochemical screening. Journal of Medical Sciences, 6(3), 321-326. https://doi.org/10.3923/jms.2006.321.326
Tong, T. H., Vu, T. B. P., Duong, C. K., & Quach, N. D. P. (2017). Khao sat hoat tinh sinh hoc cay giao co lam (Gynostemma pentaphyllum Thunb. Makino) [Biologicalactivites of (Gynostemma pentaphyllum Thunb. Makino)]. Science & Technology development Journal: Natural Sscience, 1(6), 49-57.
Wang, Z., Wang, Z., Huang, W., Suo, J., Chen X., Zhang, H. (2019). Antioxidant and antiinflammatory activities of an anti-diabetic polysaccharide extracted from Gynostemma pentaphyllum herb. International Journal of Biological Macromolecules, 145, 484-491. https://doi.org/10.1016/j.ijbiomac.2019.12.213
Xie, Z., Liu, W., Huang, H., Slavin, M., Zhao, Y., Whent M, Blackford, J., Lutterodt, H., Zhou, H., Chen, P., Wang, T. T., Wang, S., & Yu, L. L. (2010). Chemical compostion of five commerical Gynostemma pentaphyllum sample and their radical sacvenging, antiopproliferative, and anti-inflammatory properties. Journal of Argicultural and Food Chemistry, 58 (21), 11243-11249. https://doi.org/10.1021/jf1026372