RENORMALIZED SOLUTION FOR NONLINEAR PARABOLIC EQUATION

Thanh Long Nguyễn

Main Article Content

Abstract

The primary objective of this paper is to establish the existence and uniqueness of a nonnegative renormalized solution for a parabolic equation with a nonlinear operator, given nonnegative L1 data. The approach employed involves approximating the equation with truncated data, demonstrating the convergence of the truncated functions, and deriving specific estimates to obtain the renormalized solutions.

 

 

Article Details

References

Alibaud, N., Andreianov, B., & Bendahmane, M. (2010). Renormalized solutions of the fractional Laplace equation. Comptes Rendus Mathematique, 348(13), 759-762. https://doi.org/10.1016/j.crma.2010.05.006
Abdellaoui, B., Attar, A., & Bentifour, R. (2016). On the fractional p-Laplacian equations with weight and general datum. Advances in Nonlinear Analysis, 8(1), 144-174. https://doi.org/10.1515/anona-2016-0072
Applebaum, D. (2004). Lévy processes–from probability to finance quantum groups. Notices of the American Mathematical Society, 51(11) 1336-1347.
Badiale, M., & Serra, E. (2011). Semilinear Elliptic Equations for Beginners. Universitext. Springer, London. https://doi.org/10.1007/978-0-85729-227-8
Caffarelli, L. (2012). Non-local Diffusions, Drifts and Games. In: Holden, H., Karlsen, K. (eds.), Nonlinear Partial Differential Equations (vol 7, pp. 37-52). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-25361-4_3
Caffarelli, L., & Silvestre, L. (2007). An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32, 1245-1260. https://doi.org/ 10.1080/03605300600987306
Caffarelli, L., & Valdinoci, E. (2011). Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calculus of Variations and Partial Differential Equations, 41(2011),
203-240. https://doi.org/10.1007/s00526-010-0359-6
Di Nezza, E., Palatucci, G., & Valdinoci, E. (2012). Hitchhiker’s guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques, 136, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
Karlsen, K., H., Petitta, F., & Ulusoy, S. (2011). A duality approach to the fractional Laplacian with measure data. Publicacions Matematiques, 55(1), 151-161. https://doi.org/10.5565/PUBLMAT_55111_07
Landes, R. (1981). On the existence of weak solution for quasilinear parabolic initial boundary-value problems. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 89,
217-237. https://doi.org/10.1017/S0308210500020242
Metzler, R., & Klafter, J. (2004). The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics. Journal of Physics A: Maththematical and General, 37, 161-208. https://doi.org/10.1088/0305-4470/37/31/R01
Leonori, T., Peral, I., Primo, A., & Soria, F. (2015). Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete and Continuous Dynamical Systems, 35(12), 6031-6068. https://doi.org/10.3934/dcds.2015.35.6031
Petitta, F. (2016). Some remarks on the duality method for integro-differential equations with measure data. Advanced Nonlinear Studies, 16(1,) 115-124. https://doi.org/10.1515/ans-2015-5014
Zhang, C., & Zhou, S. (2010). Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and data. Journal of Differential Equations, 248(6) 1376-1400. https://doi.org/10.1016/j.jde.2009.11.024