ANISOTROPIC EXCITON IN TWO-DIMENTIONAL BLACKPHOSPHORUS IN A UNIFORM MAGNETIC FIELD: AN ALGEBRA APPROACH

Đỗ Đăng Khoa Lê , Hoàng Việt Lê , Quang Huy Lê , Văn Hoàng Lê

Main Article Content

Abstract

Exciton in monolayer semiconductor materials is of widespread interest due to their important applications in optoelectronics. An algebraic approach has been developed for excitons in monolayer transition-metal dichalcogenides with critical results. The present work extends this algebraic approach to excitons in another conductive material with an anisotropic structure: monolayer black phosphorus. This problem presents a more complex structure; however, we have developed an algebraic representation of the Schrödinger equation using quantum creation and annihilation operators. A basis set of wave functions was constructed, allowing us to derive analytical matrix elements related to these basis functions. By combining these results with algebraic calculations, we applied regulated perturbation theory in the presence of a magnetic field, achieving results consistent with other calculations, even at the zero-approximation order. These results are  a critical step toward applying the algebraic method to anisotropic two-dimensional excitons in higher-approximation orders in future studies.

 

 

Article Details

References

Arora, A. (2021). Magneto-optics of layered two-dimensional semiconductors and heterostructures: Progress and prospects. J. Appl. Phys. 129, 120902.
Avsar, A., Vera-Marun, I. J., Tan J. Y., Watanabe, K., Taniguchi, T., Castro Neto, A. H., & Ozyilmaz B. (2015). Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field- effect transistors. ACS Nano 9, 4138.
Feranchuk, I., Ivanov, A., Le, V. H., & Ulyanenkov, A. (2015). Non-perturbative Description of Quantum Systems (Vol. 894). Cham: Springer International Publishing.
Geim, A. K. & Grigorieva, I. V. (2013). Van der Waals heterostructures. Nature (London), 499, 419.
Hill, H. M., Rigosi, A. F., Roquelet, C., Chernikov, A., Berkelbach, T. C., Reichman, D. R., Hybertsen, M. S., Brus, L. E., & Heinz, T. F. (2015). Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett., 15, 2992.
Keldysh, L. V. (1979). Coulomb interaction in thin semiconductor and semimetal films. JETP Lett., 29, 658.
Kezerashvili, R. Y., Spiridonova, A., & Andrew Dublin, A. (2022). Magnetoexcitons in phosphorene monolayers, bilayers, and van der Waals heterostructures. Phys. Rev. Research, 4, 013154.
Li, J., Ma, J., Cheng, X., Liu, Z., Chen, Y, & Li, D. (2020). Anisotropy of excitons in two-dimensional perovskite crystals. ACS Nano 14, 2156.
Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X. H., & Zhang, Y. (2014). Black phosphorus field-effect transistors. Nature Nanotech, 9, 372.
Ly, D. N., Le, D. N., Phan, N. H., & Le, V. H. (2023). Thermal effect on magnetoexciton energy spectra in monolayer transition metal dichalcogenides. Phys. Rev. B., 107, 155410.
Ly, D. N., Huynh, N. T. T., Nguyen, L. H. M., Nguyen, N. Q., Doan, P. T., & Phan, N. H. (2022). Regulated perturbation theory for neutral exciton energy in a uniform magnetic field. Ho Chi Minh City University Journal of Science, 19(3), 399-410.
Nguyen, P. D. A., Ly D. N., Le D. N., Hoang, D. N. T., & Le, V. H. (2019). High-accuracy energy spectra of a two-dimensional exciton screened by reduced dimensionality with the presence of a constant magnetic field. Physica E, 113, 152.
Prada, E., Alvarez, J., Narasimha-Acharya, K., Bailen, F., & Palacios, J. (2015). Effective-mass theory for the anisotropic exciton in two-dimensional crystals: Application to phosphorene. Phys. Rev. B 91, 245421.
Wang, G., Chernikov, A., Glazov, M. M., Heinz, T. F., Marie, X., Amand, T., & Urbaszek, B. (2018). Colloquium: Excitons in atomi- cally thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001.
Wu, S. (2022). Anisotropic exciton states and excitonic absorption spectra in a freestanding monolayer black phosphorus. Physica E, 141, 115238.