SYNTHESIS AND CHARACTERIZATION OF LANTHANUM-DOPED COBALT FERRITE NANOPARTICLES PREPARED VIA SIMPLE CO-PRECIPITATION

Chí Hiền Trương 1, , Kim Chung Le 1, Hoàng Huy Nguyễn 1, Công Minh Võ 1, Thị Việt Hoa Lê 1
1 Trường Đại học Sư phạm Tp.HCM

Main Article Content

Abstract

In this study, spinel ferrite nanoparticles CoFe2-xLaxO4 (x = 0, 0.025, and 0.05) were successfully synthesized via a simple co-precipitation method using a 5% NaOH solution as a precipitating agent. The physicochemical properties of the materials, annealed at 850 °C for one hour, were characterized using powder X-ray diffraction (PXRD), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and vibrating-sample magnetometry (VSM) at room temperature. The average crystallite size, calculated from PXRD, and the particle size, determined by TEM, of the CoFe2-xLaxO4 samples ranged from 20 to 30 nm and decreased with increasing La3+ ion doping percentage. The La-doped CoFe2O4 nanomaterials exhibited high coercivity (Hc = 902.00–1045.26 Oe) and high saturation magnetization (Ms = 83.33–65.17 emu·g-1), making them ideal for use in magnetic recording materials such as hard drives, magnetic tapes, and the production of permanent magnets.

 

Article Details

References

Chung, N. T. K., & Nguyen, A. T. (2023). Structural, optical and magnetic properties of Y-doped CoFe2O4 nanoparticles prepared by a simple co-precipitation method. Journal of Materials Science: Materials in Electronic. https://doi.org/10.1007/s10854-023-099914-6
Cullity, B. D., & Graham, C. D. (2009). Introduction to Magnetic Materials, 2nd ed. Canada: John Wiley & Sons, Inc., Publication; 2009. http://doi.org/10.1002/9780470386323
Dang, T. H., Bui, T. H., Ngo, T. M. T., Nguyen, A. T., Nguyen, V. L., Le, H. P.,& Bui, X. V. (2021). Isothermal models of chromium (VI) adsorption by using Fe3O4 nanoparticles. Metallurgical and Materials Engineering, Assosiation of Metaalurgical Engineering of Serbia AMES. https://doi.org/10.30544/489
Demirci, C. E., Manna, P. K., Wroczynskyj, Y., Akturk, S., & Lierop, J. V. (2018). Lanthanum ion substituted cobalt ferrite nanoparticles and their hyperthermia efficiency. Journal of Magnetism and Magnetic Materials. https://doi.org/10.1016/j.jmmm.2018.03.024
Elayakumar, K., Manikandan, A., Dinesh, A., Thanrasu, K., Raja, K. K., Kumar, R. T., Slimani, Y., Jaganathan, S. K., & Baykal, A. (2019). Enhanced magnetic property and antibacterial biomadecal ectivity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. Journal of Magnetism and Magnetic Materials. https://doi.org/10.1016/j.jmmm.2019.01.108
Fabricio, R. M., Janio, V., Alexandre da, C. V., & Carlos, P. B. (2020). Lanthanum-doped spinel cobalt ferrite (CoF2O4) nanoparticles for environmental applications. Ceramics International. https://doi.org/10.1016/j.ceramint.2019.09.266
Hoang, B. K., Mittova, V. O., Nguyen, A. T., & Pham, T. H. D. (2022). Structural and magnetic properties of Ho-doped CuFe2O4 nanoparticles prepared by a simple co-precipitation method. Kondensirobannye Sredy Mezhfaznye Granitsy. https://doi.org/10.17308/kcmf.2022.24/9061
Kumar, P., Rana, G., Dixit, G., Kumar, A., Sharma, V., Goyal, R., Sachdev, K., Annapooni, S., & Asokan, K. (2016). Structural, electrical and magnetic properties of dilutely Y doped NiFe2O4 nanoparticles. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2016.05.248
Lamouri, R., Mounkachi, O., Salmani, E., Hamedoun, M., Benyoussel, A., & Ez-Zahraouy, H. (2020). Size effect on the magnetic properties of CoFe2O4 nanoparticles: A Monte Carlo study. Ceramics International. https://doi.org/10.1016/j.ceramint.2019.12.035
Maaz, K., Mumtaz, A., Hasanain, S. K., & Ceylan, A. (2007). Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. Journal of Magnetism and Magnetic Materials. https://doi.org/10.1016/j.j.jmmm.2006.003
Ngo, H. T. P., & Le, T. K. (2018). Polyethylene glycol-assisted sol-gel synthesis of magnetic CoFe2O4 powder as photo-fenton catalysts in the presence of oxalic acid. Journal of Sol-Gel Science and Techonology. https://doi.org/10.1007/s10971-018-4783-y
Nguyen, A. T., Truong, C. H., & Bui, X. V. (2021). Synthesis of holmium orthoferrite nanoparticles by the co-precipitation method at high temperature. Metallurgical and Materials Engineering, Assosiation of Metaalurgical Engineering of Serbia AMES. https://doi.org/10.30544/489
Nguyen, A. T., Nguyen, T. D., Mittova, V. O., Berezhnaya, M. V., & Mittova, I. Ya. (2017). Phase composition and magnetic properties of Ni1-xCoxFe2O4 nanocrystals with spinel structure synthesized by co-precipitation method. Nanosystems: Physics, Chemistry, Mathematics. https://doi.org/10.17586/2220-8054-2017-8-3-371-377.
Nguyen, A. T., Nguyen, T. T., Mittova, V. O., Nguyen, T. L., Nguyen, T. T. N., Chau, H. D., Truong, C. H., Mittova, I. Ya., & Bui, X. V. (2023). Structural, thermal, and magnetic properties of orthoferrite EuFeO3 nanoparticles prepared by a simple co-precipitation method. Journal of Materials Science: Materials in Electronic. https://doi.org/10.1007/s10854-023-10779-y
Nguyen, T. T. L., Nguyen, K. D. M., Nguyen, A. T., & Kwangsoo No. (2021). The synthesis of zinc ferrite spinel: Determination of pH value in the co-precipitation step. Ceramics International. https://doi.org/10.1016/j.ceramint.2021.10.199
Patankar, K. K., Jadhav, P. S., Devkar, J., Ghone, D. M., & Kaushik, S. D. (2017). Synthesis and characterization of CoFe2-xYxO4 (x = 0.05 – 0.2) by auto combustion method. DAE Solid State Physics Symposium, AIP Conference Proceedings. https://doi.org/10.1063.1.4980405
Truong, C. H., Nguyen, N. T. N., Nguyen, C. C. L., Nguyen, M. K., & Tran, T. T. N. (2022). Magnetic properties of spinel ferrite MFe2O4 (M = Fe, Co) nanomaterials synthesized by co-precipitation method. Journal of Science. Ho Chi Minh City University of Education. https://doi.org/10.54607/hcmue.js.19.9.3432(2022)
Rachidi, L., Omar, M., Salmani, E., Mohammaed, H., Abdelilah, B., & Hamid, E. Z. (2019). Size effect of the magnetic properties of CoFe2O4 nanoparticles: a monte carlo study. Ceramics International. https://doi.org/10.1016/j.ceramint.2019.12.035
Wang, L., Li, J., Wang, Y., Zhao, L., & Jiang, Q. (2012). Adsorption capability for congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2011.10.088
Zhao, X., Wang, W., Zhang, Y., Wu, S., Li, F., & Liu, P. (2014). Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for congo red. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2014.03.113