ENHANCED ANTIBACTERIAL EFFECTIVENESS THROUGH THE SYNERGISTIC ACTION OF THYMOL AND MELALEUCA ESSENTIAL OILS ABUNDANT IN 1,8-CINEOLE

Thị Trúc Linh Nguyễn 1, Thị Vân Trần 2, , Ngọc Nhuận Đoàn 2
1 Khoa Hóa học, trường Đại học Sư phạm TP. Hồ Chí Minh
2 Khoa Hóa học, trường Đại học Khoa học Tự nhiên TP. Hồ Chí Minh

Main Article Content

Abstract

This work is a significant contribution to antibacterial research, specifically investigating the synergistic performance of thymol-combined Melaleuca essential oil with high 1,8−cineole content against multi-drug-resistant bacteria. The two Melaleuca species used in this study, Melaleuca sp2-Myrtaceae (MM) and Melaleuca cf. Quinquenervia (MQ), were chosen for their potential antibacterial properties. Simultaneously, the four bacteria, including Bacillus cereus, Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium, were selected for the antibacterial experiment series. The results, which demonstrate the highest antibacterial efficiency at the combination of the MM essential oil with 9.5 wt.% of thymol, are not only significant but also offer hope for the future. The minimal inhibitory concentration (MIC) and the antibacterial inhibition zone data further validate the synergistic performance. These findings are promising for the future of pharmaceutical synthesis, suggesting a potential avenue for developing effective treatments against multi-drug-resistant bacteria, a significant and growing health concern.

 

Article Details

References

Adams, R. P. (2007). Identification of Essential Oil Components by Gas Chromatography/ Mass Spectrometry, 4th Edition.
Ambrosio, C. M. S., S. M. de Alencar, R. L. M. de Sousa, Moreno, A. M., & Gloria, E. M. Da. (2017). Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Industrial Crops and Products, 97, 128-136. https://doi.org/10.1016/j.indcrop.2016.11.045.
Arendrup, M.C., Hope, W., Howard, S. J. (2014). EUCAST Definitive Document E.Def 9.2 Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds. EUCAST: Basel, Switzerland.
Ayari, S., Shankar, S., Follett, P., Hossain, F., & Lacroix, M. (2020). Potential synergistic antimicrobial efficiency of binary combinations of essential oils against Bacillus cereus and Paenibacillus amylolyticus-Part A. Microbial Pathogenesis, 141, 104008, 1-28. https://doi.org/10.1016/j.micpath.2020.104008.
Banerjee, N., Biswas, S., Hossain, C. M., & Basak, P. (2022). Effectiveness of onion (Allium cepa L.) skin in human health. Contemporary Medical Biotechnology Research for Human Health, in Advances in Biotechnology and Bioengineering, Academic Press, 115-125. https://doi.org/10.1016/B978-0-323-91251-8.00003-9.
Barbosa, L. C. A., Silva, C. J., Teixeira, R. R., Meira, R. M. S. A., & Pinheiro, A. L. (2013). Chemistry and biological activities of essential oils from Melaleuca L. species. Agriculturae Conspectus Scientificus, 78(1), 11-23. https://hrcak.srce.hr/99316

Brophy, J. J., & Doran, J. C. (1996). Essential oils of tropical Asteromyrtus, Callistemon and Melaleuca species | Australian Centre for International Agricultural Research (ACIAR). https://www.aciar.gov.au/publication/books-and-manuals/essential-oils-tropical-asteromyrtus-callistemon-and-melaleuca-species
Carson, C. F., Hammer, K. A., & Riley, T. V. (2006). Melaleuca alternifolia (Tea Tree) Oil: a Review of Antimicrobial and Other Medicinal Properties. Clinical Microbiology Reviews, 19(1), 50-62. https://doi.org/10.1128/CMR.19.1.50-62.2006
Carson, C. F., Mee, B. J., & Riley, T. V. (2002). Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrobial Agents and Chemotherapy, 46(6), 1914-1920. https://doi.org/10.1128/aac.46.6.1914-1920.2002.
Chong, Y., & Lee, K. (2000). Present situation of antimicrobial resistance in Korea. Journal of Infection and Chemotherapy, 6(4), 189-195. https://doi.org/10.1007/s101560070001. or https://www.sciencedirect.com/science/article/abs/pii/S1341321X00712931
Chraibi, M., Fadil, M., Farah, A., Lebrazi, S., & Fikri-Benbrahim, K. (2021). Antimicrobial combined action of Mentha pulegium, Ormenis mixta and Mentha piperita essential oils against S. aureus, E. coli and C. tropicalis: Application of mixture design methodology. LWT - Food Science and Technology, 145, 111352, 1-11. https://doi.org/ 10.1016/j.lwt.2021.111352.
Corona-Gómez, L., Hernández-Andrade, L., Mendoza-Elvira, Susana., Suazo, F. M., Ricardo-González, D. I., & Quintanar-Guerrero, D. (2022). In vitro antimicrobial effect of essential tea tree oil (Melaleuca alternifolia), thymol, and carvacrol on microorganisms isolated from cases of bovine clinical mastitis. International Journal of Veterinary Science and Medicine, 10(1), 72-79. https://doi.org/10.1080/23144599.2022.2123082
Cox, S. D., Gustafson, J. E., Mann, C. M., Markham, J. L., Liew, Y. C., Hartland, R. P., Bell, H. C., Warmington, J. R., Wyllie S. G. (1998). Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli. Letters in Applied Microbiology, 26, 355-358. https://doi.org/10.1046/j.1472-765X.1998.00348.x
Evandro Leite de Souza. (2016). The effects of sublethal doses of essential oils and their constituents on antimicrobial susceptibility and antibiotic resistance among food-related bacteria: A review. Trends in Food Science & Technology, 56, 1-12. https://doi.org/10.1016/j.tifs.2016.07.012
Figueiredo, A. C., Barroso, J. G., Pedro, L. G., Scheffer, Johannes J. C. (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour and Fragrance Journal, 23, 213-226. https://doi.org/10.1002/ffj.1875
Jafri, H., & Ahmad, I. (2020). Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. Journal de Mycologie Médicale, 30(1), 100911. https://doi.org/10.1016/j.mycmed.2019.100911
Hamdi, A., Elkahoui, S., Alghamdi, A., Kadri, A., Patel, M., & Snoussi, M. (2020). Thymus musilii Velen. as a promising source of potent bioactive compounds with its pharmacological properties: In vitro and in silico analysis. Arabian Journal of Chemistry, 13(8), 6782-6801. https://doi.org/10.1016/j.arabjc.2020.06.032
M38 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. (2017). Clinical and Laboratory Standards Institute, Approved Standard, 3rd ed.. CLSI document M38-A2: Wayne, PA, USA.
Nazzaro, F., Fratianni, F., Martino, L. D., Coppola, R., & Feo, V. D. (2013). Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals, 6(12), 1451-1474. https://doi.org/10.3390/ph6121451
Rapper, S. L., Viljoen, A., & S. van Vuuren. (2023). Optimizing the Antimicrobial Synergism of Melaleuca alternifolia (Tea Tree) Essential Oil Combinations for Application against Respiratory Related Pathogens. Planta Medica, 89(4), 454-463. https://doi.org/10.1055/a-1947-5680
Simsek, M., & Duman, R. (2017). Investigation of Effect of 1,8-cineole on Antimicrobial Activity of Chlorhexidine Gluconate. Pharmacognosy Research, 9(3), 234-237. https://doi.org/10.4103/0974-8490.210329
Solórzano-Santos, F., & Miranda-Novales, M. G. (2012). Essential oils from aromatic herbs as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 136-141. https://doi.org/10.1016/j.copbio.2011.08.005
Soulaimani, B., Hidar, N. E., Fakir, S. Ben El., Mezrioui, N., Hassani, L., & Abbad, A. (2021). Combined antibacterial activity of essential oils extracted from Lavandula maroccana (Murb.), Thymus pallidus Batt. and Rosmarinus officinalis L. against antibiotic-resistant Gram-negative bacteria. European Journal of Integrative Medicine, 43, 101312, 1-7. https://doi.org/10.1016/j.eujim.2021.101312
Soulaimani, B., Nafis, A., Kasrati, A., Rochdi, A., Mezrious, N.-E., Abbad, A., & Hassani, L. (2019). Chemical composition, antimicrobial activity and synergistic potential of essential oil from endemic Lavandula maroccana (Mill.). South African Journal of Botany, 125, 202-206. https://doi.org/10.1016/j.sajb.2019.07.030
Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices. Reference number ISO 20776-1:2019. (2019). International Standard.
Tappero, J. W., Cassell C. H., Bunnell, R. E., Angulo, F. J., Craig, A., Pesik, N., Dahl, B. A., Kashef Ijaz, Jafari, H., Martin, R., and Global Health Security Science (2017). US Centers for Disease Control and Prevention and Its Partners’ Contributions to Global Health Security. Emerging Infectious Diseases, 23(1), S5–S14,. https://doi.org/10.3201/eid2313.170946
Ultee, A., Bennik, M. H. J., & Moezelaar, R. (2002). The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus cereus. Applied and Environmental Microbiology, 68(4), 1561-1568. https://doi.org/10.1128/AEM.68.4.1561-1568.2002
Wang, W., Wu, N., Zu, Y. G., & Fu, Y. J. (2008). Antioxidative activity of Rosmarinus officinalis L. essential oil compared to its main components. Food Chemistry, 108(3), 1019-1022. https://doi.org/ 10.1016/j.foodchem.2007.11.046
Zhang, Z., Sun, Z., & Tian, L. (2022). Antimicrobial Resistance Among Pathogens Causing Bloodstream Infections: A Multicenter Surveillance Report Over 20 Years (19982017). Infection and Drug Resistance, 15, 249-260. https://doi.org/10.2147/IDR.S344875