EFFECTS OF BONE IMPLANT MATERIALS BCP (Basic Calcium Phosphate) AND BCP - NPS (Basic calcium phosphate – Nano porous silica) ON THE BLOOD CELLS AND INTERNAL ORGANS OF ALBINO MICE (Mus musculus var. Albino)

Tran Cam Tu1, Hoang Nghia Son1, Le Phuc Chien1, Nguyen Thi Thanh Hang2, Bui Quoc Thang3, Nguyen Dai Hai4, Nguyen Thi Thuong Huyen5,
1 Institute of Tropical Biology, Vietnam Academy of Science and Technology, Vietnam
2 University of Science, Vietnam National University Ho Chi Minh City, Vietnam
3 Cho Ray Hospital, Vietnam
4 Institute of Chemical Technology, Vietnam Academy of Science and Technology, Vietnam
5 Ho Chi Minh City University of Education, Vietnam

Main Article Content

Abstract

This study examined the effects of bone implant materials BCP (Basic Calcium Phosphate) and BCP-NPS (Basic Calcium Phosphate – Nano Porous Silica) on hematological indices in an in vivo model of albino mice, aiming to estimate the effects of the materials on blood cell counts and internal organs. The experiment was conducted on 35 female albino mice, six weeks of age, using a bone injury model. The animals were assigned to five treatments: Control (DC), negative control (KC), research material BCP-NC, research material BCP-NPS, and positive control (BCP-TM). The results showed that both BCP and BCP-NPS implant materials affected fluctuations in blood cell counts in albino mice, particularly leukocytes and platelets at week 2. However, there were almost no differences after four weeks of experimentation, and all observed changes were not statistically significant (p > 0.05). Moreover, the materials did not induce severe effects on the liver, kidneys, and spleen of the mice. This confirms the potential application of BCP and BCP-NPS materials in bone grafting treatments, demonstrating their positive effects.

 

Article Details

Author Biography

Tran Cam Tu, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Vietnam

Phòng công nghệ sinh học động vật

References

Arner, J. W., & Santrock, R. D. (2014). A historical review of common bone graft materials in foot and ankle surgery. Foot Ankle Spec, 7(2), 143-151. https://doi.org/10.1177/1938640013516358
Chen, X., Wang, Z., Duan, N., Zhu, G., Schwarz, E. M., & Xie, C. (2018). Osteoblast-osteoclast interactions. Connect Tissue Res, 59(2), 99-107. https://doi.org/10.1080/03008207.2017.1290085
Einhorn, T. A., & Gerstenfeld, L. C. (2015). Fracture healing: mechanisms and interventions. Nat Rev Rheumatol, 11(1), 45-54. https://doi.org/10.1038/nrrheum.2014.164
Fronza, B., Silva, R., Vela, B., Chiari, M., & Braga, R. (2022). Mechanical Properties and Ion-Release of Composites Containing Functionalized Calcium Phosphates. Dental Materials, 38, e26-e27. https://doi.org/10.1016/j.dental.2021.12.073
Huang, Y., Wu, C., Zhang, X., Chang, J., & Dai, K. (2018). Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration. Acta Biomater, 66, 81-92. https://doi.org/10.1016/j.actbio.2017.08.044
LeGeros, R. Z. (2002). Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res, (395), 81-98. https://doi.org/10.1097/00003086-200202000-00009
Miron, R. J. (2024). Optimized bone grafting. Periodontol 2000, 94(1), 143-160. https://doi.org/10.1111/prd.12517
Miron, R. J., & Zhang, Y. F. (2012). Osteoinduction: a review of old concepts with new standards. J Dent Res, 91(8), 736-744. https://doi.org/10.1177/0022034511435260
Nguyen, T. T. H., & Vo, V. T. (2019). Experiment of Human and Animal physiolgy (text in Vietnamese). Ho Chi Minh City University of Education Publishing House.
Oryan, A., Alidadi, S., & Moshiri, A. (2016). Platelet-rich plasma for bone healing and regeneration. Expert Opin Biol Ther, 16(2), 213-232. https://doi.org/10.1517/14712598.2016.1118458
Pajarinen, J., Lin, T., Gibon, E., Kohno, Y., Maruyama, M., Nathan, K., Lu, L., Yao, Z., & Goodman, S. B. (2019). Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials, 196, 80-89. https://doi.org/10.1016/j.biomaterials.2017.12.025
Singh, P., Srivastava, S., & Singh, S. K. (2019). Nanosilica: Recent Progress in Synthesis, Functionalization, Biocompatibility, and Biomedical Applications. ACS Biomater Sci Eng, 5(10), 4882-4898. https://doi.org/10.1021/acsbiomaterials.9b00464
Srinath, P., Abdul Azeem, P., & Venugopal Reddy, K. (2020). Review on calcium silicate‐based bioceramics in bone tissue engineering. International Journal of Applied Ceramic Technology, 17(5), 2450-2464. https://doi.org/10.1111/ijac.13577
Wang, L., Li, Y., Chen, J., Gautam, S. C., Zhang, Z., Lu, M., & Chopp, M. (2002). Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture.
Exp Hematol, 30(7), 831-836. https://doi.org/10.1016/s0301-472x(02)00829-9
Wang, W., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials, 2(4), 224-247. https://doi.org/https://doi.org/10.1016/j.bioactmat.2017.05.007
Zhang, J., Zhang, W., Yue, W., Qin, W., Zhao, Y., & Xu, G. (2025). Research Progress of Bone Grafting: A Comprehensive Review. Int J Nanomedicine, 20, 4729-4757. https://doi.org/10.2147/IJN.S510524