SYNTHESIS AND CHARACTERIZATION OF COPPER HEXACYANOFERRATE (II) NANOPARTICLES

Đình Trung Nguyễn , Vũ Trâm Anh Lê , Đông Phương Trương , Thị Ánh Ly Huỳnh , Ngọc Bảo Phan , Sĩ Lợi Võ

Main Article Content

Abstract

Nanoscale copper hexacyanoferrate (CuHF) is a low-cost material prepared via a chemical co-precipitation method. XRD diagram, FTIR spectrum, EDS image, HR-TEM image, surface area (BET), and pore volume parameters were used to determine the properties and morphologies of the CuHF. The synthesized nanomaterials have the following properties: nanoscale and cubic structure (space group F-43m). The CuHF molecular formula was Cu13[Fe(CN)6]14·(2K)·10H2O. CuHF was a complex substance with a surface area of 12.80 m2/g and average pore width of about 34.50 nm.

 

Article Details

Author Biography

Đình Trung Nguyễn,

Giám đốc trung tâm phân tích và kiểm định trường Đại học Đà Lạt

Tiến sĩ Hóa học môi trường

 

References

Avila, M., Reguera, L., Rodríguez-Hernández, J., Balmaseda, J., & Reguera, E. (2008). Porous framework of T2[Fe(CN)6]•xH2O with T=Co, Ni, Cu, Zn, and H2 storage. Journal of Solid State Chemistry, 181(11), 2899-2907.
Bragg, W. H., & Bragg, W. L. (1913) The Reflexion of X-rays by Crystals. Proc R Soc Lond A., 88(605), 428-38.
Ho, K. D., Zhou, D., Wang, R, Yu, X., Jiao, Q., Yang, Z., Song, Z., & Qiu, J. (2014) Energy transfer and upconversion emission of Er3+/Tb3+/Yb3+ co-doped transparent glass-ceramics containing Ba2LaF7 nanocrystals under heat treatment. Opt Mater, 36, 639-644.
Firouzi, A., Qiao, R.; Motallebi, S., Valencia, C.W., Israel, H.S., Fujimoto, M., Wray, L.A.; Chuang, Y.-D., Yang, W., & Wessells, C.D. (2018) Monovalent manganese based anodes and
co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries. Nat. Commun.,
9, 861.
Ji, Z., Han, B., Liang, H., Zhou, C., Gao, Q., Xia, K., & Wu, J. (2016) On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for
sodium-ion batteries. ACS Appl. Mater. Interfaces, 8, 33619-33625.
Karyakin, A. (2017). Advances of Prussian blue and its analogues in (bio)sensors. Curr. Opin. Electrochem., 5, 92-98.
Karyakin, A. A. (2001) Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis, 13, 813-819.
Kiener, J., Limousy, L., Jeguirim, M., Le Meins, J. M., Hajjar-Garreau, S., Bigoin, G., & Ghimbeu, C. M. (2019). Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption. Materials, 12(8), 1253.
Lee, S. W., Yang, Y., Lee, H. W., Ghasemi, H., Kraemer, D., Chen, G., & Cui, Y. (2014) An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun,
5, 3942.
Qian, J., Wu, C., Cao, Y., Ma, Z.-F., Huang, Y., Ai, X., & Yang, H. (2018). Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries. Adv. Energy Mater, 8, 1702619.
Sun, Sh. D., Zhang, X. Ch., Cui, J., & Liang Sh. H. (2020). Identification of the Miller indices of crystallographic plane: A tutorial and comprehensive on fundamental theory, universal methods based on different case studies and matters needing attention. RCS. Nanoscale, 12, 16657-16677.
Nguyen, D. T., Ning Ping., Le, T. H. L., & Ho, K. D. (2021). Synthesis, characterization, and caesium adsorbent application of trigonal zinc hexacyanoferrate (II) nanoparticles. J Enviro Chem Engine, 9, 106772.
Vipin, A. K., Ling, S., & Fugetsu, B. (2014). Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with CNT for both cesium and strontium removal. Carbohydrate Polymers, 111, 477-484.
Wu, X., Wu, C., Wei, C., Hu, L., Qian, J., Cao, Y., Ai, X., Wang, J., & Yang, H. (2016). Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces, 8, 5393-5399.
Yun, J., Zeng, Y., Kim, M., Gao, C., Kim, Y., Lu, L., Kim, T.T.-H., Zhao, W.; Bae, T.H., &
Lee, S.W. (2021) Tear-Based Aqueous Batteries for Smart Contact Lenses Enabled by Prussian Blue Analogue Nanocomposites. Nano Lett., 21, 1659-1665.