SYNTHESIS AND CHARACTERIZATION OF COPPER HEXACYANOFERRATE (II) NANOPARTICLES
Main Article Content
Abstract
Nanoscale copper hexacyanoferrate (CuHF) is a low-cost material prepared via a chemical co-precipitation method. XRD diagram, FTIR spectrum, EDS image, HR-TEM image, surface area (BET), and pore volume parameters were used to determine the properties and morphologies of the CuHF. The synthesized nanomaterials have the following properties: nanoscale and cubic structure (space group F-43m). The CuHF molecular formula was Cu13[Fe(CN)6]14·(2K)·10H2O. CuHF was a complex substance with a surface area of 12.80 m2/g and average pore width of about 34.50 nm.
Keywords
copper hexacyanoferrate, cubic structure, nanoparticle
Article Details
References
Bragg, W. H., & Bragg, W. L. (1913) The Reflexion of X-rays by Crystals. Proc R Soc Lond A., 88(605), 428-38.
Ho, K. D., Zhou, D., Wang, R, Yu, X., Jiao, Q., Yang, Z., Song, Z., & Qiu, J. (2014) Energy transfer and upconversion emission of Er3+/Tb3+/Yb3+ co-doped transparent glass-ceramics containing Ba2LaF7 nanocrystals under heat treatment. Opt Mater, 36, 639-644.
Firouzi, A., Qiao, R.; Motallebi, S., Valencia, C.W., Israel, H.S., Fujimoto, M., Wray, L.A.; Chuang, Y.-D., Yang, W., & Wessells, C.D. (2018) Monovalent manganese based anodes and
co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries. Nat. Commun.,
9, 861.
Ji, Z., Han, B., Liang, H., Zhou, C., Gao, Q., Xia, K., & Wu, J. (2016) On the mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for
sodium-ion batteries. ACS Appl. Mater. Interfaces, 8, 33619-33625.
Karyakin, A. (2017). Advances of Prussian blue and its analogues in (bio)sensors. Curr. Opin. Electrochem., 5, 92-98.
Karyakin, A. A. (2001) Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis, 13, 813-819.
Kiener, J., Limousy, L., Jeguirim, M., Le Meins, J. M., Hajjar-Garreau, S., Bigoin, G., & Ghimbeu, C. M. (2019). Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption. Materials, 12(8), 1253.
Lee, S. W., Yang, Y., Lee, H. W., Ghasemi, H., Kraemer, D., Chen, G., & Cui, Y. (2014) An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun,
5, 3942.
Qian, J., Wu, C., Cao, Y., Ma, Z.-F., Huang, Y., Ai, X., & Yang, H. (2018). Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries. Adv. Energy Mater, 8, 1702619.
Sun, Sh. D., Zhang, X. Ch., Cui, J., & Liang Sh. H. (2020). Identification of the Miller indices of crystallographic plane: A tutorial and comprehensive on fundamental theory, universal methods based on different case studies and matters needing attention. RCS. Nanoscale, 12, 16657-16677.
Nguyen, D. T., Ning Ping., Le, T. H. L., & Ho, K. D. (2021). Synthesis, characterization, and caesium adsorbent application of trigonal zinc hexacyanoferrate (II) nanoparticles. J Enviro Chem Engine, 9, 106772.
Vipin, A. K., Ling, S., & Fugetsu, B. (2014). Sodium cobalt hexacyanoferrate encapsulated in alginate vesicle with CNT for both cesium and strontium removal. Carbohydrate Polymers, 111, 477-484.
Wu, X., Wu, C., Wei, C., Hu, L., Qian, J., Cao, Y., Ai, X., Wang, J., & Yang, H. (2016). Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces, 8, 5393-5399.
Yun, J., Zeng, Y., Kim, M., Gao, C., Kim, Y., Lu, L., Kim, T.T.-H., Zhao, W.; Bae, T.H., &
Lee, S.W. (2021) Tear-Based Aqueous Batteries for Smart Contact Lenses Enabled by Prussian Blue Analogue Nanocomposites. Nano Lett., 21, 1659-1665.