CALDERÓN-ZYGMUND COMMUTATORS ON GENERALIZED WEIGHTED LORENTZ SPACES
Main Article Content
Abstract
In this paper, we consider commutators [b, T] of Calderón-Zygmund operators of type (see Definition 1.2 and 1.3 in Section 1) on generalized weighted Lorentz spaces , where is a function that belongs to the class of Muckenhoupt weights on and is a function that belongs to the class of Ariño-Muckenhoupt weights on (see Section 1). In this setting, we first establish the pointwise estimate for the sharp maximal operator acting on Calderón-Zygmund commutators of type (see Lemma 2.2 in Section 2) by using Kolmogorov’s inequality, generalized Holder’s inequality in the sense of Luxemburg norm (see Definition 2.1) and Young function (see Lemma 2.1), and the well-known John-Nirenberg inequality. In light of this significant estimate, we then indicate that Calderón-Zygmund commutators of type are bounded on generalized weighted Lorentz spaces (see Theorem 2.1) by exploiting the ideas and techniques concerning maximal operators from the study by Carro et al. (2021). Our aforementioned main results extend the ones of Carro et al. (2021).
Keywords
Ariño and Muckenhoupt weights, Calderón-Zygmund commutators, generalized weighted Lorentz spaces, maximal operators
Article Details
References
Carro, M. J., Li, H., Soria, J., & Sun, Q. (2021). Calderón–Zygmund Operators and Commutators on Weighted Lorentz Spaces. The Journal of Geometric Analysis, 31(9), 8979-8990.
Carro, M. J., Raposo, J. A., Raposo, J. A., & Soria, J. (2007). Recent developments in the theory of Lorentz spaces and weighted inequalities. American Mathematical Soc.
Coifman, R. R., Rochberg, R., & Weiss, G. (1976). Factorization theorems for Hardy spaces in several variables. Annals of Mathematics, 103(3), 611-635.
Grafakos, L. (2009). Modern Fourier analysis, volume 250. Graduate Texts in Mathematics,
1089-1100.
John, F., & Nirenberg, L. (1961). On functions of bounded mean oscillation. Communications on pure and applied Mathematics, 14(3), 415-426.
Liu, Z., & Lu, S. (2002). Endpoint estimates for commutators of Calderón-Zygmund type operators. Kodai Mathematical Journal, 25(1), 79-88.
Muckenhoupt, B. (1972). Weighted norm inequalities for the Hardy maximal function. Transactions of the American Mathematical Society, 165, 207-226.
Taylor, M. E. (2000). Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials. American Mathematical Soc, (81).
Thai, H. M., Nguyen, V. T. D., Hoang, N. P., & Tran, T. D. (2022). The boundedness of Calderón-Zygmund operators of type theta on generalized weighted Lorentz spaces. Ho Chi Minh City University of Education Journal of Science, 19(6), 844-855.
Yabuta, K. (1985). Calderón-Zygmund operators and pseudo-differential operators. Communications in Partial Differential Equations, 10(9), 1005-1022.