CALDERÓN-ZYGMUND COMMUTATORS ON GENERALIZED WEIGHTED LORENTZ SPACES

Hoàng Minh Thái , Văn Tiến Đạt Nguyễn , Nam Phương Hoàng , Trí Dũng Trần

Main Article Content

Abstract

In this paper, we consider commutators [b, T] of Calderón-Zygmund operators of type  (see Definition 1.2 and 1.3 in Section 1) on generalized weighted Lorentz spaces , where  is a function that belongs to the class  of Muckenhoupt weights on  and  is a function that belongs to the class  of Ariño-Muckenhoupt weights on  (see Section 1). In this setting, we first establish the pointwise estimate for the sharp maximal operator acting on Calderón-Zygmund commutators of type  (see Lemma 2.2 in Section 2) by using Kolmogorov’s inequality, generalized Holder’s inequality in the sense of  Luxemburg norm (see Definition 2.1) and Young function (see Lemma 2.1), and the well-known John-Nirenberg inequality. In light of this significant estimate, we then indicate that Calderón-Zygmund commutators of type  are bounded on generalized weighted Lorentz spaces  (see Theorem 2.1) by exploiting the ideas and techniques concerning maximal operators from the study by Carro et al. (2021). Our aforementioned main results extend the ones of Carro et al. (2021).

Article Details

References

Alvarez, J., & Pérez, M. C. (1994). Estimates with A∞ weights for various singular integral operators. Bollettino dell'unione matematica italiana, 8(1), 123-133.
Carro, M. J., Li, H., Soria, J., & Sun, Q. (2021). Calderón–Zygmund Operators and Commutators on Weighted Lorentz Spaces. The Journal of Geometric Analysis, 31(9), 8979-8990.
Carro, M. J., Raposo, J. A., Raposo, J. A., & Soria, J. (2007). Recent developments in the theory of Lorentz spaces and weighted inequalities. American Mathematical Soc.
Coifman, R. R., Rochberg, R., & Weiss, G. (1976). Factorization theorems for Hardy spaces in several variables. Annals of Mathematics, 103(3), 611-635.
Grafakos, L. (2009). Modern Fourier analysis, volume 250. Graduate Texts in Mathematics,
1089-1100.
John, F., & Nirenberg, L. (1961). On functions of bounded mean oscillation. Communications on pure and applied Mathematics, 14(3), 415-426.
Liu, Z., & Lu, S. (2002). Endpoint estimates for commutators of Calderón-Zygmund type operators. Kodai Mathematical Journal, 25(1), 79-88.
Muckenhoupt, B. (1972). Weighted norm inequalities for the Hardy maximal function. Transactions of the American Mathematical Society, 165, 207-226.
Taylor, M. E. (2000). Tools for PDE: Pseudodifferential operators, paradifferential operators, and layer potentials. American Mathematical Soc, (81).
Thai, H. M., Nguyen, V. T. D., Hoang, N. P., & Tran, T. D. (2022). The boundedness of Calderón-Zygmund operators of type theta on generalized weighted Lorentz spaces. Ho Chi Minh City University of Education Journal of Science, 19(6), 844-855.
Yabuta, K. (1985). Calderón-Zygmund operators and pseudo-differential operators. Communications in Partial Differential Equations, 10(9), 1005-1022.