STUDY ON CREATING MICROENCAPSULATED SYNBIOTIC PRODUCTS FROM LACTOBACILLUS CASEI STRAIN AND THEIR APPLICATION IN MAKING JELLY SYNBIOTIC SWEETS
Main Article Content
Abstract
The research aims at creating microencapsulated synbiotic products from L. casei strain and using them in producing jelly synbiotic sweets. Synbiotic microbiological preparations from L. casei with prebiotic use of Galacto-oligosaccharides (GOS) 1,5% were created to improve the survival of L. casei strain. Microcapsules by spray drying with the following parameters: maltodextrin content is 15% (w/v); inlet temperature at 1300C, spray fluid flow of 200 ml per hour for micro-inoculants with average size of 2,15 µm, moisture content at 4,6% and density of L. casei is 9,63 log CFU/g. The results show that jelly synbiotic sweets achieve the quality and quantity of probiotics. The probiotic density reached 8,18 log CFU/g after 6 weeks of storage at room temperature and reached 7,90 log CFU/g after 9 weeks of storage at cool temperature. The product maintained the initial probiotic activity and met the requirements for food safety microbiology.
Keywords
microcapsules, synbiotic jelly, spray drying, L. casei
Article Details
References
Alves, N. N., Messaoud, G. B., Desobry, S., Costa, J. M. C., & Rodrigues S. (2016). Effect of Drying Technique and Feed Flow Rate on Bacterial Survival and Physicochemical Properties of a Non-Dairy Fermented Probiotic Juice Powder. Journal of Food Engineering, 189, 45-54.
Ananta, E., Volkert, M., & Knorr, D. (2005). Cellular Injuries and Storage Stability of Spray-Dried Lactobacillus Rhamnosus GG. International Dairy Journal, 15(4), 399-409.
Barbosa-Canovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Food Powders: Physical Properties, Processing and Functionality. Food Engineering Series. New York.
Bromberg, R., Moreno, I., Zaganini, C. L., Delboni, R. R., & De Oliveira, J. (2004). Isolation of Bacteriocin-Producing Lactic Acid Bacteria from Meat and Meat Products and Its Spectrum of Inhibitory Activity. Brazilian Journal of Microbiology, 35(1-2), 137-44.
Ding, W. K., & Shah, N. P. (2009). Effect of Various Encapsulating Materials on the Stability of Probiotic Bacteria. Journal of Food Science, 74(2), 100-107.
Fritzen-Freire, C. B., Prudencio, E. S., Amboni, R. D. M. C., Pinto, S. S., Negrao-Murakami, A. N., & Murakami, F. S. (2012). Microencapsulation of Bifidobacteria by Spray Drying in the Presence of Prebiotics. Food Research International, 45(1), 306-12.
Fu, N., & Chen, X. D. (2011). Towards a Maximal Cell Survival in Convective Thermal Drying Processes. Food Research International, 44(5), 1127-49.
Ghandi, A., Powell, I. B., Chen, X. D., & Adhikari, B. (2012). The Effect of Dryer Inlet and Outlet Air Temperatures and Protectant Solids on the Survival of Lactococcus Lactis during Spray Drying. Drying Technology, 30(14), 1649-57.
Institute of Biotechnology and Food (2015). Giao trinh Cong nghe san xuat banh keo cua Vien Cong nghe Sinh hoc va Thuc pham [Confectionery technology curriculum]. Hochiminh.
Hartel, Richard W., von Elbe, J. H., & Hofberger, R. (2018). Confectionery Science and Technology. Springer International Publishing.
Hassanzadazar, H., Ehsani, A., Mardani, K., & Hesari, J. (2012). Investigation of Antibacterial , Acid and Bile Tolerance Properties of Lactobacilli Isolated from Koozeh Cheese. Veterinary Research Forum, 3(3), 181-85.
Krasaekoopt, W., & Watcharapoka, S. (2014). Effect of Addition of Inulin and Galactooligosaccharide on the Survival of Microencapsulated Probiotics in Alginate Beads Coated with Chitosan in Simulated Digestive System , Yogurt and Fruit Juice. LWT - Food Science and Technology, 57(2), 761-66.
Nguyen, L. D. (2019). Probiotic la gi [What's Probiotic]. People's intellectual Publishing House.
Reale, A., Di Renzo, T., Rossi, F., Zotta, T., Iacumin, L., Preziuso, M., Parente, E., Sorrentino, E., & Coppola, R. (2015). Tolerance of Lactobacillus Casei , Lactobacillus Paracasei and Lactobacillus Rhamnosus Strains to Stress Factors Encountered in Food Processing and in the Gastro-Intestinal Tract. LWT - Food Science and Technology, 60(2), 721-728.
Roberfroid, M. (2007). Prebiotics: The Concept Revisited. The Journal of Nutrition, 137(3),
830S-837S.
Rodríguez-Huezo, M. E., Durán-Lugo, R., Prado-Barragán, L. A., Cruz-Sosa, F., Lobato-Calleros, C., Alvarez-Ramírez, J., & Vernon-Carter, E. J. (2007). Pre-Selection of Protective Colloids for Enhanced Viability of Bifidobacterium Bifidum Following Spray-Drying and Storage, and Evaluation of Aguamiel as Thermoprotective Prebiotic. Food Research International, 40(10), 1299-1306.
Rokka, S., & Rantamäki, P. (2010). Protecting Probiotic Bacteria by Microencapsulation: Challenges for Industrial Applications. European Food Research and Technology, 231(1), 1-12.
Soliman, A. H. S., Sharoba, A. M., Bahlol, H. E. M., Soliman, A. S., & Radi, O. M. M. (2015). Evaluation of Lactobacillus Acidophilus, Lactobacillus Casei and Lactobacillus Plantarum for Probiotic Characteristics. Middle East Journal of Applied Sciences, 5(1), 10-18.
Watson, D., O'Connell Motherway, M., Schoterman, M. H. C., van Neerven, R. J. J., Nauta, A., & van Sinderen, D. (2013). Selective Carbohydrate Utilization by Lactobacilli and Bifidobacteria. Journal of Applied Microbiology, 114(4), 1132-1146.
Ying, D., Sun, J., Sanguansri, L., Weerakkody, R., & Augustin, M. A. (2012). Enhanced Survival of Spray-Dried Microencapsulated Lactobacillus Rhamnosus GG in the Presence of Glucose. Journal of Food Engineering, 109(3), 597-602.
Ananta, E., Volkert, M., & Knorr, D. (2005). Cellular Injuries and Storage Stability of Spray-Dried Lactobacillus Rhamnosus GG. International Dairy Journal, 15(4), 399-409.
Barbosa-Canovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Food Powders: Physical Properties, Processing and Functionality. Food Engineering Series. New York.
Bromberg, R., Moreno, I., Zaganini, C. L., Delboni, R. R., & De Oliveira, J. (2004). Isolation of Bacteriocin-Producing Lactic Acid Bacteria from Meat and Meat Products and Its Spectrum of Inhibitory Activity. Brazilian Journal of Microbiology, 35(1-2), 137-44.
Ding, W. K., & Shah, N. P. (2009). Effect of Various Encapsulating Materials on the Stability of Probiotic Bacteria. Journal of Food Science, 74(2), 100-107.
Fritzen-Freire, C. B., Prudencio, E. S., Amboni, R. D. M. C., Pinto, S. S., Negrao-Murakami, A. N., & Murakami, F. S. (2012). Microencapsulation of Bifidobacteria by Spray Drying in the Presence of Prebiotics. Food Research International, 45(1), 306-12.
Fu, N., & Chen, X. D. (2011). Towards a Maximal Cell Survival in Convective Thermal Drying Processes. Food Research International, 44(5), 1127-49.
Ghandi, A., Powell, I. B., Chen, X. D., & Adhikari, B. (2012). The Effect of Dryer Inlet and Outlet Air Temperatures and Protectant Solids on the Survival of Lactococcus Lactis during Spray Drying. Drying Technology, 30(14), 1649-57.
Institute of Biotechnology and Food (2015). Giao trinh Cong nghe san xuat banh keo cua Vien Cong nghe Sinh hoc va Thuc pham [Confectionery technology curriculum]. Hochiminh.
Hartel, Richard W., von Elbe, J. H., & Hofberger, R. (2018). Confectionery Science and Technology. Springer International Publishing.
Hassanzadazar, H., Ehsani, A., Mardani, K., & Hesari, J. (2012). Investigation of Antibacterial , Acid and Bile Tolerance Properties of Lactobacilli Isolated from Koozeh Cheese. Veterinary Research Forum, 3(3), 181-85.
Krasaekoopt, W., & Watcharapoka, S. (2014). Effect of Addition of Inulin and Galactooligosaccharide on the Survival of Microencapsulated Probiotics in Alginate Beads Coated with Chitosan in Simulated Digestive System , Yogurt and Fruit Juice. LWT - Food Science and Technology, 57(2), 761-66.
Nguyen, L. D. (2019). Probiotic la gi [What's Probiotic]. People's intellectual Publishing House.
Reale, A., Di Renzo, T., Rossi, F., Zotta, T., Iacumin, L., Preziuso, M., Parente, E., Sorrentino, E., & Coppola, R. (2015). Tolerance of Lactobacillus Casei , Lactobacillus Paracasei and Lactobacillus Rhamnosus Strains to Stress Factors Encountered in Food Processing and in the Gastro-Intestinal Tract. LWT - Food Science and Technology, 60(2), 721-728.
Roberfroid, M. (2007). Prebiotics: The Concept Revisited. The Journal of Nutrition, 137(3),
830S-837S.
Rodríguez-Huezo, M. E., Durán-Lugo, R., Prado-Barragán, L. A., Cruz-Sosa, F., Lobato-Calleros, C., Alvarez-Ramírez, J., & Vernon-Carter, E. J. (2007). Pre-Selection of Protective Colloids for Enhanced Viability of Bifidobacterium Bifidum Following Spray-Drying and Storage, and Evaluation of Aguamiel as Thermoprotective Prebiotic. Food Research International, 40(10), 1299-1306.
Rokka, S., & Rantamäki, P. (2010). Protecting Probiotic Bacteria by Microencapsulation: Challenges for Industrial Applications. European Food Research and Technology, 231(1), 1-12.
Soliman, A. H. S., Sharoba, A. M., Bahlol, H. E. M., Soliman, A. S., & Radi, O. M. M. (2015). Evaluation of Lactobacillus Acidophilus, Lactobacillus Casei and Lactobacillus Plantarum for Probiotic Characteristics. Middle East Journal of Applied Sciences, 5(1), 10-18.
Watson, D., O'Connell Motherway, M., Schoterman, M. H. C., van Neerven, R. J. J., Nauta, A., & van Sinderen, D. (2013). Selective Carbohydrate Utilization by Lactobacilli and Bifidobacteria. Journal of Applied Microbiology, 114(4), 1132-1146.
Ying, D., Sun, J., Sanguansri, L., Weerakkody, R., & Augustin, M. A. (2012). Enhanced Survival of Spray-Dried Microencapsulated Lactobacillus Rhamnosus GG in the Presence of Glucose. Journal of Food Engineering, 109(3), 597-602.