A COMPARISON OF USING CB-SEM AND PLS-SEM TO ASSESS TRAINING EFFECTIVENESS EVALUATION MODEL FOR TEACHER’S ONLINE CONTINUING PROFESSIONAL DEVELOPMENT

Thanh Trung Tạ , Thanh Nga Nguyễn

Main Article Content

Abstract

 

Structural equation modeling (SEM), the second generation of statistical method is being used commonly in scientific research all around the world and is gradually getting attention from Vietnamese educational scientists over a few years back. This study aims to compare the result in using CB-SEM with PLS-SEM based on the data surveying effectiveness evaluation model for teachers’ online continuing professional development (CPD). Research findings imply that the resources of online CPD for teachers directly affect their satisfaction, subsequently have an indirect effect on applying skills into practice. Most of the testing results in the measurement model and structural model did not demonstrate the significant difference between the two approaches: CB-SEM and PLS-SEM. All measurements met the criteria for reliability, convergence, and divergence. However, in few criteria for assessing the theory value, the suitability of the measurement model, and the convenience for performing, the advantages of PLS-SEM are the disadvantages of CB-SEM, and, vice versa, the disadvantages of PLS-SEM are the advantages of CB-SEM.

 

Article Details

References

Astrachan, C. B., Patel, V. K., & Wanzenried, G. (2014). A comparative study of CB-SEM and PLS-SEM for theory development in family firm research. Journal of Family Business Strategy, 5(1), 116-128. doi:10.1016/j.jfbs.2013.12.002
Austrian Development Cooperation. (2009). Guidelines for Project and Programme Evaluations.
Baumgartner, H., & Homburg, C. (1996). Applications of structural equation modeling in marketing and consumer research: A review. International Journal of Research in Marketing, 13(2), 139-161. doi:10.1016/0167-8116(95)00038-0
Bien, N. V., Van, N. A., Son, D. V., & Khuyen, N. T. (2020). Reliability and validity an instrument to assess creative competency in engineering design on STEM education [Xay dung cong cu danh gia nang luc sang tao thiet ke ki thuat trong giao duc STEM]. HNUE Journal of Science, 65(1), 151-162. doi:10.18173/2354-1075.2020-0015
Broad, K., & Evans, M. (2006). A Review of Literature On Professional Development Content And Delivery Modes For Experienced Teachers. Toronto, ON: University of Toronto, Ontario Institute for Studies in Education.
Bryant, F. B., & Yarnold, P. R. (1995). Principal-components analysis and exploratory and confirmatory factor analysis. In L. G. Grimm, & P. R. Yarnold, Reading and understanding multivariate statistics (pp. 99-136). Washington DC: American Psychological Association.
Chin, W. W., & Todd, P. A. (1995). On the Use, Usefulness, and Ease of Use of Structural Equation Modeling in MIS Research: A Note of Caution. Management Information Systems Research Center, University of Minnesota, 237-246. doi:10.2307/249690
Churchill, G. A. (1979). A Paradigm for Developing Better Measures of Marketing Constructs. Journal of Marketing Research, 64-73. doi:10.2307/3150876
Day, C. (1999). Developing Teachers: The Challenges of Lifelong Learning. Routledge.
Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. doi:10.1177/002224378101800104
Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Yoon, K. S. (2001). What Makes Professional Development Effective? Results From a National Sample of Teachers. American Educational Research Joural, 38(4), 915-945. doi:10.3102/00028312038004915
Garson, G. D. (2016). Partial Least Squares: Regression & Structural Equation Models: 2016 Edition. Asheboro: Statistical Associates Publishing.
Gerbing, D. W., & Anderson, J. C. (1988). An Updated Paradigm for Scale Development Incorporating Unidimensionality and Its Assessment. Journal of Marketing Research, 25(2), 186-192. doi:10.2307/3172650
Goodhue, D. L., Lewis, W., & Thompson, R. (2012). Comparing PLS to regression and LISREL: a response to Marcoulides, Chin, and Saunders. MIS Quarterly, 36(2). doi:10.2307/41703476
Guarino, A. J. (2004). A Comparison of First and Second Generation Multivariate Analyses: Canonical Correlation Analysis and Structural Equation Modeling. Florida Journal of Educational Research, 40, 22-40.
Haenlein, M., & Kaplan, A. (2004). A Beginner’s Guide to Partial Least Squares Analysis. Understanding Statistics, 3(4), 283-297. doi:10.1207/s15328031us0304_4
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (8th ed.). Cengage Learning, EMEA.
Hair, J. F., Hult, G. T., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM) (3nd ed.). Thousand Oaks, CA: Sage.
Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40, 414-433. doi:10.1007/s11747 -011-0261-6
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 2-20. doi:10.1108/IMDS-09-2015-0382
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing, Science, 43, 115-135. doi:10.1007/s11747-014-0403-8
Jöreskog, K. G. (1993). Testing Structural Equation Models. In K. A. Bollen, & J. S. Long, Testing Structural Equation Models (pp. 294-316). Thousand Oaks, CA: Sage.
Kaufman, R., Keller, J., & Watkins, R. (1996). What works and what doesn’t: Evaluation beyond Kirkpatrick. Nonprofit Management Leadership, 35, 8-12. doi:10.1002/pfi.4170350204
Kennedy, A. (2005). Models of Continuing Professional Development: a framework for analysis. Journal of In-service Education, 235-250. doi:10.1080/13674580500200277
Kline, R. B. (2016). Principles and Practice of Structural Equation Modeling (4th ed.). The Guilford Press.
Lohmöller, J. B. (1989). Latent Variable Path Modeling with Partial Least Squares. Physica-Verlag, Heidelberg. doi:10.1007/978-3-642-52512-4
Ngoc-Tan, N., & Gregar, A. (2019). Knowledge Management and Its Impacts on Organisational Performance: An Empirical Research in Public Higher Education Institutions of Vietnam. Journal of Information & Knowledge Management, 18(2), 1950015. doi:10.1142/S0219649219500151
Nunnally, J. C., & Bernstein, I. H. (1994). The Assessment of Reliability. In Psychometric Theory (Vol. 3, pp. 248-292). New York: McGraw-Hill.
Ranatunga, R., Priyanath, H., & Megama, R. (2020). Methods and Rule-Of-Thumbs in The Determination of Minimum Sample Size When Appling Structural Equation Modelling: A Review. Journal of Social Science Research, 15, 102-109. doi:10.24297/jssr.v15i.8670
Sarstedt, M., Ringle, C. M., Henseler, J., & Hair, J. F. (2014). On the Emancipation of PLS-SEM: A Commentary on Rigdon 2012. Long Range Planning, 47(3), 154-160. doi:10.1016/j.lrp.2014.02.007
Steenkamp, J. E., & van Trijp, J. C. (1991). The use of LISREL in validating marketing constructs. Marketing and Consumer Behaviour, 8, 289-299. doi:10.1016/0167-8116(91)90027-5
Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International Journal of Medical Education, 2, 53-55. doi:10.5116/ijme.4dfb.8dfd