EVALUATION OF DIFFERENT COMPUTER CODES FOR GENERATION OF X-RAY SPECTRA IN GENERAL DIAGNOSTIC RADIOGRAPHY
Main Article Content
Abstract
This study presents the simulation results of the X-ray spectra of the general diagnostic radiography unit by using an empirical model (Spektr 3.0), semi-empirical models (IPEM 78 report No.78, SpekPy, and Xpecgen), and a Monte Carlo model (EGSnrc). The general diagnostic machine was assessed by quality assurance testing. The half-value layer (HVL), mean energy (Emean), and Air kerma per milliampere-second (Kair/mAs) have been measured at different tube voltages and compared with those obtained from five computer codes. The heel effect and target material composition were investigated. The IPEM report No.78 was used as a reference to compare with other computer codes. The comparative assessment showed that the HVL, Emean, and Kair/mAs were well-matched between the five codes and physical measurements in diagnostic radiology energy ranges. The Monte Carlo modeling is a sophisticated, precise computational tool that can characterize the spectra of newly developed target material compositions, complex geometrical configurations, and contributions of secondary particles, which are mostly empirical and semi-empirical models that currently can’t be performed accurately.
Keywords
EGSnrc simulation, Half-value layer, Monte Carlo, Radiography, X-ray spectra
Article Details
References
Ay, M. R., Shahriari, M., Sarkar, S., Adib, M., & Zaidi, H. (2004). Monte Carlo simulation of X-ray spectra in diagnostic radiology and mammography using MCNP4C. Physics in Medicine and Biology, 49(21), 4897-4917.
Bethe, H., (1930). Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Ann. Phys., 397, 325-400.
Birch, R., & Marshall, M. (1979). Computation of bremsstrahlung X-ray spectra and comparison with spectra measured with a Ge(Li) detector. Physics in Medicine and Biology, 24(3), 505-517.
Blough, M. M., Waggener, R. G., Payne, W. H., & Terry, J. A. (1998). Calculated mammographic spectra confirmed with attenuation curves for molybdenum, rhodium, and tungsten targets. Medical Physics, 25(9), 1605-1612.
Boone, J. M., & Seibert, J. A. (1997). An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV. Medical Physics, 24(11), 1661-1670.
Boone, J. M., Fewell, T. R., & Jennings, R. J. (1997). Molybdenum, rhodium, and tungsten anode spectral models using interpolating polynomials with application to mammography. Medical Physics, 24(12), 1863-1874.
Bujila, R., Omar, A., & Poludniowski, G. (2020). A validation of SpekPy: A software toolkit for modelling X-ray tube spectra. Physica medica : PM : An international journal devoted to the applications of physics to medicine and biology : Official journal of the Italian Association of Biomedical Physics (AIFB), 75, 44-54. Advance online publication.
Fewell, T. R., & Shuping, R. E. (1977). Photon energy distribution of some typical diagnostic X-ray beams. Medical Physics, 4(3), 18-197.
Hernandez, A. M., & Boone, J. M. (2014). Tungsten anode spectral model using interpolating cubic splines: unfiltered x-ray spectra from 20 kV to 640 kV. Medical Physics, 41(4), Article 042101.
Hernández, G., & Fernández, F. (2016). A model of tungsten anode x-ray spectra. Medical Physics, 43(8), Article 4655.
Hyemin, P., Jungmin, K., Jungsu, K., Seong-ok, K., & Young-min, C. (2018). Amendment of the Inspection Standard for Diagnostic Radiation Equipment Applying IEC 60601-1-3: Medical Electrical Equipment – Part 1-3: General Requirements for Basic Safety and Essential Performance – Collateral Standard: Radiation Protection in Diagnostic X-ray Equipment. Journal of Radiological Science and Technology, 41(5), 493-504.
Iles, W. J. (1987). The computation of Bremsstrahlung X-ray spectra over an energy range 15 keV to 300 keV (NRPB-R--204). United Kingdom.
International Atomic Energy Agency. (2023). Handbook of basic quality control tests for diagnostic radiology (No. 47 in Human Health Series). IAEA. ISBN 978-92-0-130322-6
Kawrakow, I. (2000). EGSnrc toolkit for Monte Carlo simulation of ionizing radiation transport. National Research Council Canada.
Kulkarni, R. N., & Supe, S. J. (1984). Monte Carlo calculations of mammographic X-ray spectra. Physics in Medicine and Biology, 29(2), 185-190.
Math. Graphics. Programming. (2023). https://www.mathworks. com/products/matlab.html.; [Accessed 18 January 2023].
MathWorks. (2023). MATLAB [Computer software]. https://www.mathworks.com/products/matlab.html
Morrison, G. D. (1998). [Review of the book Catalogue of Diagnostic X-ray Spectra and Other Data (IPEM Report 78), by K. Cranley, B. J. Gilmore, G. W. A. Fogarty, & L. Desponds (Eds.)]. Radiography, 4(2), 228-229.
National Institute of Standards and Technology. (2004, July). X-ray mass attenuation coefficients. U.S. Department of Commerce. https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients
Ng, K. P., Kwok, C. S., & Tang, F. H. (2000). Monte Carlo simulation of X-ray spectra in mammography. Physics in Medicine and Biology, 45(5), 1309-1318.
Punnoose, J., Xu, J., Sisniega, A., Zbijewski, W., & Siewerdsen, J. H. (2016). Technical Note: Spektr 3.0-A computational tool for x-ray spectrum modeling and analysis. Medical Physics, 43(8), Article 4711.
Rogers, D. W. O., Walters, B. R. B., & Kawrakow, I. (2009). BEAMnrc users manual (NRC Report PIRS-0509). National Research Council of Canada.
Salvat, F., Fernández-Varea, J. M., & Sempau, J. (2011). *PENELOPE-2008: A code system for Monte Carlo simulation of electron and photon transport* (NEA/NSC/DOC[2011]5). Nuclear Energy Agency. https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/penelope2008.pdf
Shaw, D., Worrall, M., Baker, C., Charnock, P., Fazakerley, J., Honey, I., Iball, G., Koutalonis, M., Price, M., Renaud, C., Rose, A., & Wood, T. (2020). IPEM Topical Report: An evidence and risk assessment based analysis of the efficacy of quality assurance tests on fluoroscopy units-part II; image quality. Physics in medicine and biology, 65(22), Article 225037.
Taleei, R., & Shahriari, M. (2009). Monte Carlo simulation of X-ray spectra and evaluation of filter effect using MCNP4C and FLUKA code. Applied radiation and isotopes: including data, instrumentation and methods for use in agriculture, industry and medicine, 67(2), 266-271.
Townson, R., Tessier, F., Mainegra, E., & Walters, B. (2020). Getting started with EGSnrc. Nrc Rep Pirs, 12, 10-43.
Tucker, D. M., Barnes, G. T., & Chakraborty, D. P. (1991). Semiempirical model for generating tungsten target x-ray spectra. Medical Physics, 18(2), 211-218.
Tucker, D. M., Barnes, G. T., & Wu, X. Z. (1991). Molybdenum target X-ray spectra: A semiempirical model. Medical Physics, 18(3), 402-407.
Waggener, R. G., Blough, M. M., Terry, J. A., Chen, D., Lee, N. E., Zhang, S., & McDavid, W. D. (1999). X-ray spectra estimation using attenuation measurements from 25 kVp to 18 MV. Medical Physics, 26(7), 1269-1278.
Whiddington, R. (1912). The transmission of cathode rays through matter. Proceedings of the Royal Society of London. Series A. 86, 360-370.
Wolfram Mathematica: Modern technical computing. (2023). Retrieved January 18, 2023 from https://www.wolfram.com
Yagi, H., Kitamura, R., Saruwatari, R., Doi, N., & Yamane, E. (2003). Nihon Hoshasen Gijutsu Gakkai zasshi, 59(6), 729-736.