A GENERALIZED DISTRIBUTIONAL INEQUALITY AND APPLICATIONS
Main Article Content
Abstract
The distributional inequality recently introduced by Tran and Nguyen has been used to investigate gradient estimates for solutions to partial differential equations. In particular, the authors established several sufficient conditions under which two measurable functions can be compared via their norms in general Lebesgue spaces. The results are then applied to some classes of p-Laplace type problems. This paper extends this inequality to make it applicable to a broader range of equations. Specifically, we propose a generalized distributional inequality that can be applied to the p(x)-Laplace equation, the typical version of quasi-linear elliptic equations with variable exponents.
Keywords
Generalized distributional inequality, Lorentz spaces, p(x)-Laplace equation, Quasi-linear elliptic problems, Regularity theory, Variable exponents
Article Details
References
Acerbi, E., & Mingione. G. (2007). Gradient estimates for a class of parabolic systems. Duke Mathematical Journal, 136, 285-320.
Byun, S. S., & Ok, J. (2016). On W^(1,q(⋅))-estimates for elliptic equations of p(x)-Laplacian type. Journal of Applied Mathematics, 106, 512-545. https://doi.org/10.1016/j.matpur.2016.03.002
Caffarelli, L. A., & Peral, I. (1998). On W^(1,p) estimates for elliptic equations in divergence form. Communications on Pure and Applied Mathematics, 51(1), 1-21.
Grafakos, L. (2004). Classical and Modern Fourier Analysis. Prentice Hall.
Muckenhoupt, B., & Wheeden, R. L. (1974). Weighted norm inequalities for fractional integrals. Transactions of the American Mathematical Society, 192, 261-275. https://doi.org/10.1090/S0002-9947-1974-0340523-6
Nguyen, T. N., Tran, C. S., & Huynh, P. N. (2021). A short proof for level-set inequalities on distribution functions. HCMUE Journal of Science, 18(6), 1051-1063. https://doi.org/10.54607/hcmue.js.18.6.3129
Nguyen, T. N., & Tran, M. P. (2021). Level-set inequalities on fractional maximal distribution functions and applications to regularity theory. Journal of Functional Analysis, 280(1),
Article 108797. https://doi.org/10.1016/j.jfa.2020.108797
Nguyen, T. N., Tran, M. P., & Tran, N. T. N. (2023). Regularity estimates for stationary Stokes problem in some generalized function spaces. Zeitschrift für angewandte Mathematik und Physik, 74(1), Article 24. https://doi.org/10.1007/s00033-022-01901-x
Tran, M. K. A., Truong, N. Y., Tran, H. L., & Tran, T. Q. (2025). Calderón-Zygmund type results for a class of quasilinear elliptic equations involving the p(x)-Laplacian. Vietnam Journal of Mathematics, 53, 453-472. https://doi.org/10.1007/s10013-024-00690-2
Tran, M. P., & Nguyen. T. N. (2020). New gradient estimates for solutions to quasilinear divergence form elliptic equations with general Dirichlet boundary data. Journal of Differential Equations, 268(4), 1427-1462. https://doi.org/10.1016/j.jde.2019.08.052
Tran, M. P., & Nguyen, T. N. (2022). Global gradient estimates for very singular quasilinear elliptic equations with nondivergence data, Nonlinear Analysis, 214(3), Article 112613. https://doi.org/10.1016/j.na.2021.112613
Tran, M. P., & Nguyen, T. N. (2022). Weighted distribution approach to gradient estimates for quasilinear elliptic doubleobstacle problems in Orlicz spaces. Journal of Mathematical Analysis and Applications, 509(1), Article 125928. https://doi.org/10.1016/j.jmaa.2021.125928
Tran, M. P., & Nguyen, T. N. (2023). Gradient estimates via Riesz potentials and fractional maximal operators for quasilinear elliptic equations with applications. Nonlinear Analysis: Real World Applications, 69, Article 103750. https://doi.org/10.1016/j.nonrwa.2022.103750
Tran, M. P., Nguyen, T. N., & Huynh, P. N. (2023). Calderón-Zygmund-type estimates for singular quasilinear elliptic obstacle problems with measure data. Studia Mathematica, 273(3), 287-319. https://doi.org/10.48550/arXiv.2109.01026
Tran, M. P., Nguyen, T. N., & Pham, L. T. N. (2024). Gradient bounds for non-uniformly quasilinear elliptic two-sided obstacle problems with variable exponents. Journal of Mathematical Analysis and Applications, 531(1), Article 127776. https://doi.org/10.1016/j.jmaa.2023.127776
Tran, M. P., Nguyen, T. N., Pham, L. T. N., & Dang, T. T. T. (2023). Weighted Lorentz estimates for non-uniformly elliptic problems with variable exponents. Manuscripta Mathematica, 172(3-4), 1227-1244. https://doi.org/10.1007/s00229-022-01452-5