THE BOUNDEDNESS OF CALDERÓN-ZYGMUND COMMUTATORS OF TYPE THETA OVER SPACES OF HOMOGENEOUS TYPE
Main Article Content
Abstract
In this paper, we study the boundedness of Calderón-Zygmund operator and its commutator of type on generalized Morrey-Lorentz spaces , where is a space of homogeneous type. We first modify a well-known result of Calderón-Zygmund decomposition to prove that Calderón-Zygmund operators are of strong type on , for every (see Lemma 2.1, Lemma 2.2, and Lemma 2.3). By using Kolmogorov’s inequality, conditions of Calderón-Zygmund operators, and BMO spaces, we establish two pointwise estimates for sharp maximal operators (see Lemma 2.6 and Lemma 2.8). Finally, we derive the boundedness of and on (see Theorem 3.1).
Keywords
Calderón-Zygmund commutator of type, generalised Morrey-Lorentz space, space of homogeneous type
Article Details
References
Dao, N. A., & Krantz, S. G. (2021). Lorentz boundedness and compactness characterization of integral commutators on spaces of homogeneous type. Nonlinear Analysis, 203, Article 112162. https://doi.org/10.1016/j.na.2020.112162
Grafakos, L. (2009). Modern fourier analysis (Vol. 250, pp. xvi+-504). New York: Springer.
Kinnunen, J. (2023). Harmonic Analysis. Department of Mathematics, Aalto University.
Liu, Z., & Lu, S. (2002). Endpoint estimates for commutators of Calderón-Zygmund type operators. Kodai Mathematical Journal, 25(1), 79-88. https://doi.org/10.2996/kmj/1106171078
Nghia, L. T., Phat, P. T, Thuc, L. M., Thanh, D. K., & Tran, T. D. (2023). Calderón-Zygmund commutators of type theta on generalized Morrey- Lorentz space. Ho Chi Minh City University of Education Journal of Science, 21(3), 2065-2080. https://doi.org/10.54607/hcmue.js.21.3.4123(2023)
Thai, H. M., Nguyen, V. T. D., Hoang, N. P., & Tran, T. D. (2022). The boundedness of Calderón-Zygmund operators of type theta on generalized weighted Lorentz spaces. Ho Chi Minh City University of Education Journal of Science, 19(6), 844-855. https://doi.org/10.54607/hcmue.js.19.10.3483(2022)
Tran, T. D. (2014). Generalized weighted Hardy–Cesàro operators and their commutators on weighted Morrey spaces. Journal of Mathematical Analysis and Applications, 412(2),
1025-1035. https://doi.org/10.1016/j.jmaa.2013.11.035