SIMULATING MOLECULAR NONADIABATIC ALIGNMENT
Main Article Content
Abstract
Recently, molecular alignment techniques have become an appealing topic in molecular and optical physics, strong-field physics, femtosecond chemistry, and attosecond physics. Despite the availability of several alignment techniques, molecular nonadiabatic alignment is widely used in both theoretical and experimental studies due to assembling molecules in space for a sufficiently short period of time under field-free conditions, avoiding the laser’s effect on the interested physical or chemical phenomena. As a result, developing a program that simulates molecular nonadiabatic alignment is necessary to ensure that numerical results match experimental observations. Existing tools, such as those by Oppermann et al. (2012) and Sonoda et al. (2018), are either limited to specific molecules or require significant modifications for alignment simulations. For that reason, we provide a program that simulates linear-molecular nonadiabatic alignment. In this paper, we present the numerical simulation of the time evolution of a molecular rotational wave packet by solving the time-dependent Schrödinger equation and evaluate our results with reliable published studies. Additionally, a challenge in such simulations is determining the optimal value of the expansion used for numerical simulation. We provide a systematic method for selecting the optimal parameter , ensuring both computational efficiency and solution convergence. The program is evaluated for , and OCS with a variety of laser pulses and rotational temperature. Program available at: https://github.com/DuongDHoangTrong/HCMUE_Alignment.
Keywords
laser-matter interaction, linear molecules, molecular nonadiabatic alignment, rotational wave packet
Article Details
References
Bashkansky, M., Bucksbaum, P. H., & Schumacher, D. W. (1988). Asymmetries in above-threshold ionization. Physical Review Letters, 60(24), 2458-2461. https://doi.org/10.1103/PhysRevLett.60.2458
Burnett, N. H., Baldis, H. A., Richardson, M. C., & Enright, G. D. (1977). Harmonic generation in CO2 laser target interaction. Applied Physics Letters, 31(3), 172-174. https://doi.org/10.1063/1.89628
Cocker, T. L., Peller, D., Yu, P., Repp, J., & Huber, R. (2016). Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature, 539(7628), 263-267. https://doi.org/10.1038/nature19816
Eberly, J. H., Javanainen, J., & Rza̧zewski, K. (1991). Above-threshold ionization. Physics Reports, 204(5), 331-383. https://doi.org/10.1016/0370-1573(91)90131-5
Friedrich, B., & Herschbach, D. (1995). Alignment and trapping of molecules in intense laser fields. Physical Review Letters, 74(23), 4623-4626. https://doi.org/10.1103/PhysRevLett.74.4623
Itatani, J., Lavesque, J., Zeidler, D., Niikura, H., Pépin, H., Kieffer, J. C., Corkum, P. B., & Villeneuve, D. M. (2004). Tomographic imaging of molecular orbitals. Nature, 432(7019), 867-871. https://doi.org/10.1038/nature03183
Jiang, C., Jiang, H., Chen, Y., Li, B., Lin, C. D., & Jin, C. (2022). Genetic-algorithm retrieval of the molecular alignment distribution with high-order harmonics generated from transiently aligned CO2 molecules. Physical Review A, 105(2). https://doi.org/10.1103/PhysRevA.105.023111
Jin, C., Le, A. T., Zhao, S. F., Lucchese, R. R., & Lin, C. D. (2010). Theoretical study of photoelectron angular distributions in single-photon ionization of aligned N2 and CO2. Physical Review A - Atomic, Molecular, and Optical Physics, 81(3), 1-12. https://doi.org/10.1103/PhysRevA.81.033421
Jin, C., Wang, S. J., Zhao, X., Zhao, S. F., & Lin, C. D. (2020). Shaping attosecond pulses by controlling the minima in high-order harmonic generation through alignment of CO2 molecules. Physical Review A, 101(1), 1-12. https://doi.org/10.1103/PhysRevA.101.013429
Loriot, V., Tzallas, P., Benis, E. P., Hertz, E., Lavorel, B., Charalambidis, D., & Faucher, O. (2007). Laser-induced field-free alignment of the OCS molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 40(12), 2503-2510. https://doi.org/10.1088/0953-4075/40/12/023
Omiste, J. J., Gärttner, M., Schmelcher, P., González-Férez, R., Holmegaard, L., Nielsen, J. H., Stapelfeldt, H., & Küpper, J. (2011). Theoretical description of adiabatic laser alignment and mixed-field orientation: The need for a non-adiabatic model. Physical Chemistry Chemical Physics, 13(42), 18815-18824. https://doi.org/10.1039/c1cp21195a
Oppermann, M., Weber, S. J., & Marangos, J. P. (2012). Characterising and optimising impulsive molecular alignment in mixed gas samples. Physical Chemistry Chemical Physics, 14(27), 9785-9791. https://doi.org/10.1039/c2cp40677b
Péronne, E., Poulsen, M. D., Stapelfeldt, H., Bisgaard, C. Z., Hamilton, E., & Seideman, T. (2004). Nonadiabatic laser-induced alignment of iodobenzene molecules. Physical Review A - Atomic, Molecular, and Optical Physics, 70(6), 1-9. https://doi.org/10.1103/PhysRevA.70.063410
Physikd, F., Friedrich, B., & Herschbach, D. R. (1991). Atoms, Molecules Zeilschrilt and Clusters On the possibility of orienting rotationally cooled polar molecules in an electric field. Molecules and Clusters, 18(153), 153-161.
Pickering, J. D., Shepperson, B., Hübschmann, B. A. K., Thorning, F., & Stapelfeldt, H. (2018). Alignment and Imaging of the CS2 Dimer Inside Helium Nanodroplets. Physical Review Letters, 120(11), 113202. https://doi.org/10.1103/PhysRevLett.120.113202
Pullman, D. P., Friedrich, B., & Herschbach, D. R. (1990). Facile alignment of molecular rotation in supersonic beams. The Journal of Chemical Physics, 93(5), 3224-3236. https://doi.org/10.1063/1.458855
Qin, M., & Zhu, X. (2017). Molecular orbital imaging for partially aligned molecules. Optics and Laser Technology, 87, 79-86. https://doi.org/10.1016/j.optlastec.2016.07.019
Seideman, T. (1995). Rotational excitation and molecular alignment in intense laser fields. The Journal of Chemical Physics, 103(18), 7887-7896. https://doi.org/10.1063/1.470206
Seideman, T. (1997). Molecular optics in an intense laser field: A route to nanoscale material design. Physical Review A - Atomic, Molecular, and Optical Physics, 56(1), R17-R20. https://doi.org/10.1103/PhysRevA.56.R17
Seideman, T., & Hamilton, E. (2005). Nonadiabatic Alignment by Intense Pulses. Concepts, Theory, and Directions. Advances in Atomic, Molecular and Optical Physics, 52(05), 289-329. https://doi.org/10.1016/S1049-250X(05)52006-8
Sinha, M. P., Caldwell, C. D., & Zare, R. N. (1974). Alignment of molecules in gaseous transport: Alkali dimers in supersonic nozzle beams. The Journal of Chemical Physics, 61(2), 491-502. https://doi.org/10.1063/1.1681923
Sonoda, K., Iwasaki, A., Yamanouchi, K., & Hasegawa, H. (2018). Field-free molecular orientation of nonadiabatically aligned OCS. Chemical Physics Letters, 693, 114-120. https://doi.org/10.1016/j.cplett.2018.01.009
Stapelfeldt, H., & Seideman, T. (2003). Colloquium: Aligning molecules with strong laser pulses. Reviews of Modern Physics, 75(2), 543-557. https://doi.org/10.1103/RevModPhys.75.543
Tong, X. M., & Chu, S. I. (1997). Theoretical study of multiple high-order harmonic generation by intense ultrashort pulsed laser fields: A new generalized pseudospectral time-dependent method. Chemical Physics, 217(2-3 SPEC. ISS.), 119-130. https://doi.org/10.1016/s0301-0104(97)00063-3
Tong, X. M., & Chu, S. I. (2000). Time-dependent approach to high-resolution spectroscopy and quantum dynamics of Rydberg atoms in crossed magnetic and electric fields. Physical Review A - Atomic, Molecular, and Optical Physics, 61(3), 4. https://doi.org/10.1103/PhysRevA.61.031401
Torres, R., De Nalda, R., & Marangos, J. P. (2005). Dynamics of laser-induced molecular alignment in the impulsive and adiabatic regimes: A direct comparison. Physical Review A - Atomic, Molecular, and Optical Physics, 72(2), 1–8. https://doi.org/10.1103/PhysRevA.72.023420
Villeneuve, D. M. (2018). Attosecond science. Contemporary Physics, 59(1), 47-61. https://doi.org/10.1080/00107514.2017.1407093
Watson, J. B., Sanpera, A., Lappas, D. G., Knight, P. L., & Burnett, K. (1997). Nonsequential double ionization of helium. Physical Review Letters, 78(10), 1884-1887. https://doi.org/10.1103/PhysRevLett.78.1884
Yang, Z., & Zhou, X. (2006). Effect of Temperature on Alignment of N2 and O2 in Laser Field. Acta Physico - Chimica Sinica, 22(8), 932-936. https://doi.org/10.1016/S1872-1508(06)60041-7