EVALUATING NUCLEAR RADIATIVE STRENGTH FUNCTION MODELS BASED ON THE EXPERIMENTAL NEUTRON-CAPTURE CROSS-SECTION OF 55Mn(n,γ)56Mn REACTION

Ngọc Anh Nguyễn 1, Tấn Phúc Lê 2,
1 Phenikaa Institute for Advanced Study (PIAS), Phenikaa University
2 Institute of Fundamental and Applied Sciences, Duy Tan University

Main Article Content

Abstract

Describing the nuclear radiative strength function (RSF) at energies below the neutron separation energy (Bn) is crucial for providing reliable input in nuclear reaction and nuclear astrophysics calculations. In this study, we evaluate eight RSF models, encompassing both phenomenological and microscopic approaches, by employing them as input to calculate the neutron-capture cross-section of the 55Mn(n,γ)56Mn reaction. The result is then compared with the experimental one. The results indicate that microscopic RSF models built on the Hartree-Fock mean field theory offer good descriptions of the cross-section, with notable performance observed in the temperature-dependent Hartree-Fock-Bogoliubov (T-dependent HFB) model. Selecting such appropriate RSF models ensures reliable input for calculations related to nuclear reactions and astrophysics.

Article Details

Author Biographies

Ngọc Anh Nguyễn, Phenikaa Institute for Advanced Study (PIAS), Phenikaa University

PhD

Tấn Phúc Lê, Institute of Fundamental and Applied Sciences, Duy Tan University

PhD

References

Arteaga, D. P., & Ring, P. (2008). Relativistic random-phase approximation in axial symmetry. Physical Review C—Nuclear Physics, 77(3), Article 034317. https://doi.org/10.1103/PhysRevC.77.034317
Axel, P. (1962). Electric dipole ground-state transition width strength function and 7-MeV photon interactions. Physical Review, 126(2), Article 671. https://doi.org/10.1103/PhysRev.126.671
Blatt, J. M., & Weisskopf, V. F. (2012). Theoretical nuclear physics. Springer Science & Business Media. https://doi.org/10.1007/978-1-4612-9959-2
Brink, D. M. (1957). Individual particle and collective aspects of the nuclear photoeffect. Nuclear Physics, 4, 215-220. https://doi.org/10.1016/0029-5582(87)90021-6
Brink, D. M. (1955). Ph. D. Thesis, University of Oxford.
Dovbenko, A. G., Kolesov, V. E., Koroleva, V. P., & Tolstikov, V. A. (1969). Cross sections of 55Mn, 69Ga, 71Ga, and 98Mo for radiative capture of fast neutrons. Soviet Atomic Energy, 26(1), 82-85. https://doi.org/10.1007/BF01155419
Garg, J. B., Macklin, R. L., & Halperin, J. (1978). Neutron capture cross section of manganese. Physical Review C, 18(5), Article 2079. https://doi.org/10.1103/PhysRevC.18.2079
Goriely, S. (1998). Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis. Physics Letters B, 436(1-2), 10-18. https://doi.org/10.1016/S0370-2693(98)00907-1
Goriely, S., & Khan, E. (2002). Large-scale QRPA calculation of E1-strength and its impact on the neutron capture cross section. Nuclear Physics A, 706(1-2), 217-232. https://doi.org/10.1016/S0375-9474(02)00860-6
Goriely, S., Khan, E., & Samyn, M. (2004). Microscopic HFB+ QRPA predictions of dipole strength for astrophysics applications. Nuclear Physics A, 739(3-4), 331-352. https://doi.org/10.1016/j.nuclphysa.2004.04.105
Goriely, S., Dimitriou, P., Wiedeking, M., Belgya, T., Firestone, R., Kopecky, J., Krtička, M., Plujko, V., Schwengner, R., Siem, S., Alhassan, E., Filipescu, D., Glodariu, T., Katayama, S., Renstrøm, T., Sin, M., Tao, X., Tveten, G. M., … Xu, R. (2019). Reference database for photon strength functions. The European Physical Journal A, 55, 1-52. https://doi.org/10.1140/epja/i2019-12840-1
Hauser, W., & Feshbach, H. (1952). The inelastic scattering of neutrons. Physical review, 87(2), 366. https://doi.org/10.1103/PhysRev.87.366
Hilaire, S., Girod, M., Goriely, S., & Koning, A. J. (2012). Temperature-dependent combinatorial level densities with the D1M Gogny force. Physical Review C—Nuclear Physics, 86(6), Article 064317. https://doi.org/10.1103/PhysRevC.86.064317
Hung, N. Q., Dang, N. D., & Huong, L. Q. (2017). Simultaneous microscopic description of nuclear level density and radiative strength function. Physical Review Letters, 118(2), Article 022502. https://doi.org/10.1103/PhysRevLett.118.022502
Kadmenskii, S. G., Markushev, V. P., & Furman, V. I. (1983). Dynamical enhancement of parity violation effects for compound states and giant 0- resonances. Sov. Soviet Journal of Nuclear Physics (English Translation), 37(3).
Koning, A. J., Hilaire, S., & Duijvestijn, M. C. (2007). TALYS-1.0. In International Conference on Nuclear Data for Science and Technology (pp. 211-214). EDP Sciences. https://doi.org/10.1051/ndata:07767
Kopecky, J., & Uhl, M. (1990). Test of gamma-ray strength functions in nuclear reaction model calculations. Physical Review C, 41(5), Article 1941. https://doi.org/10.1103/PhysRevC.41.1941
Kopecky, J., Uhl, M., & Chrien, R. E. (1993). Radiative strength in the compound nucleus 157Gd. Physical review C, 47(1), Article 312. https://doi.org/10.1103/PhysRevC.47.312
Martini, M., Hilaire, S., Goriely, S., Koning, A. J., & Péru, S. (2014). Improved nuclear inputs for nuclear model codes based on the Gogny interaction. Nuclear Data Sheets, 118, 273-275. https://doi.org/10.1016/j.nds.2014.04.056
Menlove, H. O., Coop, K. L., Grench, H. A., & Sher, R. (1967). Neutron Radiative Capture Cross Sections for 23Na, 55Mn, 115In, and 165Ho in the Energy Range 1.0 to 19.4 MeV. Physical Review, 163(4), 1299-1308. https://doi.org/10.1103/PhysRev.163.1299
Oslo database: https://www.mn.uio.no/fysikk/english/research/about/infrastructure/ocl/nuclear-physics-research/compilation/
RIPL-2: https://www-nds.iaea.org/RIPL-2/
RIPL-3: https://www-nds.iaea.org/RIPL-3/
Schwengner, R., Frauendorf, S., & Brown, B. A. (2017). Low-energy magnetic dipole radiation in open-shell nuclei. Physical Review Letters, 118(9), Article 092502. https://doi.org/10.1103/PhysRevLett.118.092502
Stupegia, D. C., Schmidt, M., Keedy, C. R., & Madson, A. A. (1968). Neutron capture between 5 keV and 3 MeV. Journal of Nuclear Energy, 22(5), 267-281. https://doi.org/10.1016/0022-3107(68)90001-4