THE EFFECTS OF MICROGRAVITY ON CCL-13 CELL PROLIFERATION

Nghĩa Quang Huy Hoàng , Thành Long Lê , Nghĩa Sơn Hoàng , Nguyễn Quỳnh Chi Hồ

Main Article Content

Abstract

 

This study aimed to evaluate the proliferation of Chang liver cells (CCL-13) after simulated microgravity (SMG) induction, demonstrated by changes in the cell number, viability and expression of the cell cycle related genes. The results showed that cells in the SMG group exhibited a lower proliferation than the control group, and the OD value in the WST-1 assay of the SMG group was also lower than the control group. The value of nuclear intensity also decreased in the cells exposed to SMG conditions. The expression of cdk4, cdk6, cyclin A, and cyclin D was reduced in the SMG group compared to the control group.

 

 

Article Details

References

Arsic, N., Bendris, N., Peter, M., Begon-Pescia, C., Rebouissou, C., Gadéa, G., Bouquier, N., Bibeau, F., Lemmers, B., & Blanchard, J. M. (2012). A novel function for Cyclin A2: Control of cell invasion via RhoA signaling. Journal of Cell Biology, 196(1), 147-162. https://doi.org/10.1083/jcb.201102085
Bahreyni-Toossi, M.-T., Azimian, H., Aghaee-Bakhtiari, S. H., Mahmoudi, M., Sadat- Darbandi, M., & Zafari, N. (2021). Radiation-induced DNA damage and altered expression of p21, cyclin D1 and Mre11 genes in human fibroblast cell lines with different radiosensitivity. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 823, 111760. https://doi.org/10.1016/j.mrfmmm.2021.111760
Bertoli, C., Skotheim, J. M., & De Bruin, R. A. M. (2013). Control of cell cycle transcription during G1 and S phases. Nature Reviews Molecular Cell Biology, 14(8), 518-528. https://doi.org/10.1038/nrm3629
Burkhart, D. L., & Sage, J. (2008). Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nature Reviews Cancer, 8(9), 671-682. https://doi.org/10.1038/nrc2399
Chen, B., Guo, J., Wang, S., Kang, L., Deng, Y., & Li, Y. (2018). Simulated Microgravity Altered the Metabolism of Loureirin B and the Expression of Major Cytochrome P450 in Liver of Rats. Frontiers in Pharmacology, 9, 1130. https://doi.org/10.3389/fphar.2018.01130
Chen, Y., Liu, J., Yuan, B., Cao, C., Qin, S., Cao, X., Bian, G., Wang, Z., & Jiang, J. (2013). Methylated actinomycin D, a novel actinomycin D analog induces apoptosis in HepG2 cells through Fas‐ and mitochondria‐mediated pathways. Molecular Carcinogenesis, 52(12), 983-996. https://doi.org/10.1002/mc.21943
Chibazakura, T., Kamachi, K., Ohara, M., Tane, S., Yoshikawa, H., & Roberts, J. M. (2011). Cyclin A Promotes S-Phase Entry via Interaction with the Replication Licensing Factor Mcm7. Molecular and Cellular Biology, 31(2), 248-255. https://doi.org/10.1128/MCB.00630-10
Crucian, B., Simpson, R. J., Mehta, S., Stowe, R., Chouker, A., Hwang, S.-A., Actor, J. K., Salam, A. P., Pierson, D., & Sams, C. (2014). Terrestrial stress analogs for spaceflight associated immune system dysregulation. Brain, Behavior, and Immunity, 39, 23-32. https://doi.org/10.1016/j.bbi.2014.01.011
Dick, F. A., & Rubin, S. M. (2013). Molecular mechanisms underlying RB protein function. Nature Reviews Molecular Cell Biology, 14(5), 297-306. https://doi.org/10.1038/nrm3567
Gong, W., Wang, L., Zheng, Z., Chen, W., Du, P., & Zhao, H. (2020). Cyclin-dependent kinase 6 (CDK6) is a candidate diagnostic biomarker for early non-small cell lung cancer. Translational Cancer Research, 9(1), 95-103. https://doi.org/10.21037/tcr.2019.11.21
Ho, C. N. Q., Tran, M. T., Doan, C. C., Hoang, S. N., Tran, D. H., & Le, L. T. (2021). Simulated Microgravity Inhibits the Proliferation of Chang Liver Cells by Attenuation of the Major Cell Cycle Regulators and Cytoskeletal Proteins. International Journal of Molecular Sciences, 22(9), 4550. https://doi.org/10.3390/ijms22094550
Ji, X., Humenik, J., Yang, D., & Liebhaber, S. A. (2018). PolyC-binding proteins enhance expression of the CDK2 cell cycle regulatory protein via alternative splicing. Nucleic Acids Research, 46(4), 2030-2044. https://doi.org/10.1093/nar/gkx1255
Kang, C.-Y., Zou, L., Yuan, M., Wang, Y., Li, T.-Z., Zhang, Y., Wang, J.-F., Li, Y., Deng, X.-W., & Liu, C.-T. (2011). Impact of simulated microgravity on microvascular endothelial cell apoptosis. European Journal of Applied Physiology, 111(9), 2131-2138. https://doi.org/10.1007/s00421-011-1844-0
Loukil, A. (2015). Cyclin A2: At the crossroads of cell cycle and cell invasion. World Journal of Biological Chemistry, 6(4), 346. https://doi.org/10.4331/wjbc.v6.i4.346
Morey-Holton, E. R. (2003). The impact of gravity on life. In Evolution on planet Earth (pp. 143-159). Elsevier. https://www.sciencedirect.com/science/article/pii/B9780125986557500367
Morgan, D. O. (1997). CYCLIN-DEPENDENT KINASES: Engines, Clocks, and Microprocessors. Annual Review of Cell and Developmental Biology, 13(1), 261-291. https://doi.org/10.1146/annurev.cellbio.13.1.261
Nguyen, H. P., Tran, P. H., Kim, K.-S., & Yang, S.-G. (2021). The effects of real and simulated microgravity on cellular mitochondrial function. Npj Microgravity, 7(1), 44. https://doi.org/10.1038/s41526-021-00171-7
Pagano, M., Pepperkok, R., Verde, F., Ansorge, W., & Draetta, G. (1992). Cyclin A is required at two points in the human cell cycle. The EMBO Journal, 11(3), 961–971. https://doi.org/10.1002/j.1460-2075.1992.tb05135.x
Pala, R., Cruciani, S., Manca, A., Garroni, G., El Faqir, M. A., Lentini, V., Capobianco, G., Pantaleo, A., & Maioli, M. (2023). Mesenchymal Stem Cell Behavior under Microgravity: From Stress Response to a Premature Senescence. International Journal of Molecular Sciences, 24(9), 7753. https://doi.org/10.3390/ijms24097753
Poehlmann, A., Reissig, K., Schönfeld, P., Walluscheck, D., Schinlauer, A., Hartig, R., Lessel, W., Guenther, T., Silver, A., & Roessner, A. (2013). Repeated H2O2 exposure drives cell cycle progression in an in vitro model of ulcerative colitis. Journal of Cellular and Molecular Medicine, 17(12), 1619-1631. https://doi.org/10.1111/jcmm.12150
Rui, L. (2014). Energy Metabolism in the Liver. In R. Terjung (Ed.), Comprehensive Physiology (1st ed., pp. 177-197). Wiley. https://doi.org/10.1002/cphy.c130024
Scott, K. D., Nath-Sain, S., Agnew, M. D., & Marignani, P. A. (2007). LKB1 Catalytically Deficient Mutants Enhance Cyclin D1 Expression. Cancer Research, 67(12), 5622-5627. https://doi.org/10.1158/0008-5472.CAN-07-0762
Sherr, C. J., & Roberts, J. M. (2004). Living with or without cyclins and cyclin-dependent kinases. Genes & Development, 18(22), 2699–2711. https://doi.org/10.1101/gad.1256504
Tan, X., Xu, A., Zhao, T., Zhao, Q., Zhang, J., Fan, C., Deng, Y., Freywald, A., Genth, H., & Xiang, J. (2018). Simulated microgravity inhibits cell focal adhesions leading to reduced melanoma cell proliferation and metastasis via FAK/RhoA-regulated mTORC1 and AMPK pathways. Scientific Reports, 8(1), 3769. https://doi.org/10.1038/s41598-018-20459-1
Tang, N., Hui, T., Ma, J., & Mei, Q. (2019). Effects of miR‐503‐5p on apoptosis of human pulmonary microvascular endothelial cells in simulated microgravity. Journal of Cellular Biochemistry, 120(1), 727-737. https://doi.org/10.1002/jcb.27430
Touchstone, H., Bryd, R., Loisate, S., Thompson, M., Kim, S., Puranam, K., Senthilnathan, A. N., Pu, X., Beard, R., Rubin, J., Alwood, J., Oxford, J. T., & Uzer, G. (2019). Recovery of stem cell proliferation by low intensity vibration under simulated microgravity requires LINC complex. Npj Microgravity, 5(1), 11. https://doi.org/10.1038/s41526-019-0072-5
Tran, M. T., Doan, C. C., Hoang, S. N., Ly, C. N., Nguyen, M. T. P., To, Q. M., Truong, N. H., Ho, C. N. Q., & Le, L. T. (2023). Changes in the Cell Division of Chang Liver Cells Induced by Simulated Microgravity. Applied Sciences, 13(13), 7351. https://doi.org/10.3390/app13137351
White, O., Clément, G., Fortrat, J.-O., Pavy-LeTraon, A., Thonnard, J.-L., Blanc, S., Wuyts, F. L., & Paloski, W. H. (2016). Towards human exploration of space: The THESEUS review series on neurophysiology research priorities. Npj Microgravity, 2(1), 16023. https://doi.org/10.1038/npjmgrav.2016.23
Yan, M., Wang, Y., Yang, M., Liu, Y., Qu, B., Ye, Z., Liang, W., Sun, X., & Luo, Z. (2015). The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells. Biochemical and Biophysical Research Communications, 460(2), 327–332. https://doi.org/10.1016/j.bbrc.2015.03.034
Yang, T., Li, C., Zhang, L., Li, M., & Zhou, P. (2013). A Promising Hepatocyte-Like Cell Line, CCL-13, Exhibits Good Liver Function Both In Vitro and in an Acute Liver Failure Model. Transplantation Proceedings, 45(2), 688-694. https://doi.org/10.1016/j.transproceed.2012.11.012
Zong, B., Wang, Y., Wang, J., Zhang, P., Kan, G., Li, M., Feng, J., Wang, Y., Chen, X., Jin, R., & Ge, Q. (2022). Effects of long‐term simulated microgravity on liver metabolism in rhesus macaques. The FASEB Journal, 36(10). https://doi.org/10.1096/fj.202200544RR