USE OF DEEP LEARNING MODELS FOR LUNG CANCER DIAGNOSIS

Trinh Huy Hoang1, , Tran Van Tuan1, Nguyen Le Minh Ngoc1, Nguyen Duong Quoc Bao1, Le Hong Thuy Vu2
1 Ho Chi Minh City University of Education, Vietnam
2 Faculty of Information Technology, Ho Chi Minh City University of Foreign Languages and Information Technology, Vietnam

Main Article Content

Abstract

Advances in modern medicine have facilitated the early detection of lung cancer. This study proposes a novel deep learning approach by modifying the traditional U-Net architecture, in which the decoder part is entirely removed and replaced with a specialized classification branch appended to the encoder. This change helps the model focus on extracting global image features relevant to classification, rather than reconstructing pixel-level segmentation maps. This not only significantly reduces the computational complexity but also maintains the ability to learn deep features from medical images for lung cancer detection and diagnosis. Based on the IQ-OTH/NCCD dataset, the improved U-Net model outperforms other deep learning methods, including VGG-16, ResNet-50, NasNet Mobile, and ViT.

Article Details

References

Alyasriy, H., & AL-Huseiny, M. (2021). The IQ-OTH/NCCD lung cancer dataset (Version 2) [Data set]. Mendeley Data. https://doi.org/10.17632/bhmdr45bh2.2
Arun, M., Deenadhayalan, M., Deepak, R., Balaraman, S., & Deepak, D. (2024, July). Lung cancer detection using ResNet-50 CNN architecture. In 2024 Second International Conference on Advances in Information Technology (ICAIT) (Vol. 1, pp. 1-6). IEEE. https://doi.org/10.1109/ICAIT60841.2024.10540822
Azad, R., Aghdam, E. K., Rauland, A., Jia, Y., Avval, A. H., Bozorgpour, A., Karimijafarbigloo, S., Cohen, J. P., Adeli, E., & Merhof, D. (2024). Medical image segmentation review: The success of u-net. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2024.3435571.
Huynh, A. T., Hoang, V. D., Vu, S., Le, T. T., & Nguyen, H. D. (2022, July). Skin cancer classification using different backbones of convolutional neural networks. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (pp. 160-172). Cham: Springer International Publishing.
Hosseini, S. H., Monsefi, R., & Shadroo, S. (2024). Deep learning applications for lung cancer diagnosis: A systematic review. Multimedia Tools and Applications, 83(5), 14305-14335. https://doi.org/10.1007/s11042-023-17930-1
Howlader, N., Forjaz, G., Mooradian, M. J., Meza, R., Kong, C. Y., Cronin, K. A., Mariotto, A. B., Lowy, D. R., & Feuer, E. J. (2020). The effect of advances in lung-cancer treatment on population mortality. New England Journal of Medicine, 383(7), 640-649. https://doi.org/10.1056/NEJMoa1916623
IARC. (2022). Viet Nam Fact Sheet – Globocan 2022. World Health Organization. https://gco.iarc.who.int
Kibriya, H., Siddiqa, A., & Khan, W. Z. (2025). Melanoma lesion localization using U-Net and explainable AI. Neural Computing and Applications, 37, 10175-10196
Kumar, V., Altahan, B. R., Rasheed, T., Singh, P., Soni, D., Alsaab, H. O., & Ahmadi, F. (2023). Improved U-Net deep learning model for automatic detection of lung cancer nodules. Computational Intelligence and Neuroscience, 2023(1), 9739264. https://doi.org/10.1155/2023/9739264
Kumar, V., Prabha, C., Sharma, P., Mittal, N., Askar, S. S., & Abouhawwash, M. (2024). Unified deep learning models for enhanced lung cancer prediction with ResNet-50–101 and EfficientNet-B3 using DICOM images. BMC medical imaging, 24(1), 63. https://doi.org/10.1186/s12880-024-01235-2
Nasra, P. (2024, August). Lung cancer classification using ResNet50. In 2024 Second International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI) (pp. 1201-1205). IEEE. https://doi.org/10.1109/ICoICI61130.2024.10540823
Prasad, P. H. S., Daswanth, N. M. V. S., Kumar, C. V. S. P., Yeeramally, N., Mohan, V. M., & Satish, T. (2023, February). Detection of lung cancer using VGG-16. In 2023 7th International Conference on Computing Methodologies and Communication (ICCMC) (pp. 860-865). IEEE. https://doi.org/10.1109/ICCMC56507.2023.10084029
Subhajeet Das. (2024). IQ-OTH/NCCD Lung Cancer Dataset (Augmented) [Dataset]. Kaggle. https://doi.org/10.34740/kaggle/ds/6582139
Tran, N. N., Nguyen, H. D., Huynh, N. T., Tran, N. P., & Nguyen, L. V. (2022). Segmentation on chest CT imaging in COVID-19 based on the improvement attention U-Net model. In New trends in intelligent software methodologies, tools and techniques (pp. 596-606). IOS Press.
Truong, H. M., & Huynh, H. T. (2023). A novel approach for CT-based COVID-19 classification and lesion segmentation based on deep learning. The Computer Journal, 66(6), 1366-1375.
Wang, T., Wu, F., Lu, H., & Xu, S. (2023). CA-U-Net: Convolution and attention fusion for lung nodule segmentation. International Journal of Imaging Systems and Technology, 33(5), 1469-1479. https://doi.org/10.1002/ima.22912
Xu, H., Yu, Y., Chang, J., Hu, X., Tian, Z., & Li, O. (2024). Precision lung cancer screening from CT scans using a VGG16-based convolutional neural network. Frontiers in Oncology, 14, 1424546. https://doi.org/10.3389/fonc.2024.1424546