PHYSICO-CHEMICAL CHARACTERISTICS OF La1–xNdxFeO3 NANOPARTICLES OBTAINED FROM THE CO-PRECIPITATION TECHNIQUE

Chu Thi Kim Huong1, Pham Le Thanh2, Nguyen Van Yen3, Nguyen Anh Tien1,
1 Ho Chi Minh City University of Education, Vietnam
2 Nguyen Hien High School, Ho Chi Minh City, Vietnam
3 VNU University of Engineering and Technology, Vietnam

Main Article Content

Abstract

In this study, a series of neodymium-doped lanthanum perovskite nanoparticles (La1–xNdxFeO3, with x = 0, 0.1, 0.15, and 0.2 based on theoretical stoichiometry) were synthesized using a simple co-precipitation method. The structural and magnetic properties of the synthesized samples were characterized by powder X-ray diffraction (PXRD), energy-dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM and TEM), and vibrating sample magnetometry (VSM). Single-phase perovskite structures of La1–xNdxFeO3 were formed after calcination of the dried precipitate at 800 °C for 60 minutes. The average crystallite size and unit cell volume were found to decrease with increasing Nd3+ doping (DScher = 30.71–27.07 nm; V = 242.62–241.41 Å3). The synthesized nanoparticles exhibited spherical to near-spherical morphology with particle sizes ranging from 30 to 50 nm. Both LaFeO3 and La0.8Nd0.2FeO3 samples exhibited soft ferromagnetic behavior, characterized by nearly-zero coercivity (Hc, Oe) and remanent magnetization (Mr, emu·g–1), while showing relatively high saturation magnetization (Ms = 0.13–0.19 emu·g–1).

Article Details

References

Abbas, Y. M., Ali, S. E., Mansour, A. B., & Abdel-Hamid, A. H. I. (2018). Synthesis, structure and magnetic characterization of orthoferrite LaFeO3 nanoparticles. Journal of Advances in Physics, 14(3), 5664-5681.https://doi.org/10.24297/jap.v14i3.7693
Adline, S. B., & Ferby, V. A. (2024). Envisioning the structural, morphological, optical, dielectrical and electrical properties of Nd3+ ions doped LaFeO3 nanoparticles – study on effect of Nd3+ doping concentration. Materials Science and Engineering: B, 309, 117630. https://doi.org/10.1016/j.mseb.2024.117630
Çoban, D. Ö., Türk, A., & Çelik, E., (2020). Synthesis and characterizations of sol–gel derived LaFeO3 perovskite powders. Journal of Materials Science: Materials in Electronics, 3, 22789-22809. https://doi.org/10.1007/s10854-020-04803-8.
Housecroft, C. E., & Sharpe, A. G. (2005). Inorganic chemistry (2nd ed.). Pearson Prentice Hall.
Kondrashkova, I. S., Martinson, K. D., Zakharova, N. V., & Popkov, V. I. (2018). Synthesis of nanocrystalline HoFeO3 photocatalyst via heat treatment of products of glycine-nitrate combustion. Russian Journal of General Chemistry, 88, 2465-2471. https://doi.org/10.1134/S107036321812002
Martinson, K. D., Kondrashkova, I. S., Omarov, S. O., Sladkpvskiy, D. A., Kiselev, A. S., Kiseleva, T. Yu., & Popkov, V. I. (2020). Magnetically recoverable catalyst based on porous nanocrystalline HoFeO3 for processes of n-hexane conversion. Advanced Powder Technology, 31(1), 402-408. https://doi.org/10.1016/j.apt.2019.10.033
Nguyen, T. K. C., Tran, D. T., Mittova, V. O., Tomina, E. V., Mittova, I. Ya., Vu, T. N. A., Nguyen, A. T., Bui, T. H., & Bui, X. V. (2024). Physicochemical characteristics of DyFeO3 perovskite nanoparticles synthesized by a simple co-precipitation method at room temperature. Emergent Materials, 7, 2767-2775. https://doi.org/10.1007/s42247-024-00768-0
Nguyen, H. H., Nguyen, T. T. T., Mittova, V. O., Tomina, E. V., Vu, T. N. A., & Nguyen, A. T. (2025). Structural, thermal, optical, and magnetic behavior of the nanosized perovskite-like GdFeO3 synthesized by modified co-precipitation method. Journal of Materials Science: Materials in Electronic, 36, 710. https://doi.org/10.1007/s10854-025-14805-z
Nguyen, A. T., Nguyen, T. H. N., Tran, T. T. N., Truong, C. H., Nguyen, T. N., Nguyen, T. L., Tran, V. M., Pham, T. L., Tran, T. K. N., & Kim, Il T. (2025). Synthesis and characterization of HoMnxFe1–xO3 perovskite nanoparticles anode for Li-ion batteries, Inorganic Chemistry Communications, 179, 114725. https://doi.org/10.1016/j.inoche.2025.114725
Nguyen, T. T., & Dang, L. M. (2012). Size effect on the structural and magnetic properties of nanosized perovskite LaFeO3 prepared by different methods. Advances in Materials Science and Engineering, 2012, 380306. https://doi.org/10.1155/2012/380306.
Pena, P., & Fierro, J. (2001). Chemical structures and performance of perovskite oxide. Chemical Reviews, 101(7), 1981-2018. https://doi.org/10.1021/cr980129f
Pidburtnyi, M., Zanca, B., Coppex, C., Villegas, S. J., & Thangadurai, V. (2021). A review on perovskite-type LaFeO3 based electrodes for CO2 reduction in solid oxide electrolysis cells: current understanding of structure-functional property relationships. Chemistry of Materials, 33, 4249-4268. https://doi.org/10.1021/acs.chemmater.1c00771
Pham, T. H. D., Nguyen, A. T., & Bui, X. V. (2022). Optical and magnetic characteristics of LaFeO3 nanoparticles synthesized by simple co-precipitation method. Asian Journal of Chemistry, 34(5), 1279-1283. https://doi.org/10.14233/ajchem.2022.23606
Popkov, V. I., Tugova, E. A., Bachina, A. K., & Almyasheva, O. V. (2017). The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides. Russian Journal of General Chemistry, 87, 2516-2524. https://doi.org/10.1134/S1070363217110020
RameshKumar, R., Ramachandran, T., Natarajan, K., Muralidharan, M., Hamed, F., & Kurapati, V. (2019). Fraction of rare-earth (Sm/Nd)-lanthanum ferrite-based perovskite ferroelectric and magnetic nanopowders. Journal of Electronic Materials, 48(3), 1694-1703. https://doi.org/10.1007/s11664-018-06897-7.
Warshi, M. K., Mishra, V., Sagdeo, A., Mishra, V., Kumar, R., & Sagdeo, P. R. (2018). Structural, optical and electronic properties of RFeO3. Ceramics International, 44(7), 8344-8349. https://doi.org/10.1016/j.ceramint.2018.02.023
Sasikala, C., Durairaj, N., Baskaran, I., Sathyaseelan, B., Henini, M., & Manikandan, E. (2017). Transition metal titanium (Ti) doped LaFeO3 nanoparticles for enhanced optical structural and magnetic properties. Journal of Alloys and Compounds, 712, 870-877. https://doi.org/10.1016/j.jallcom.2017.04.133.
Sasikala, C., Suresh, G., Durairaj, N., Baskaran, I., Sathyaseelan, B., Manikandan, E., Srinivasan, R., & Moodley, K. M. (2019). Chemical, morphological, structural, optical, and magnetic properties of transition metal titanium (Ti)-doped LaFeO3 nanoparticles. Journal of Superconductivity and Novel Magnetism, 32(6), 1791-1797. https://doi.org/10.1007/s10948-018-4879-1.
Shi, Z., Li, H., Zhang, L., & Cao, Y. (2022). Improved photocatalytic activity of LaFeO3 with doping Mn3+ ions and modifying Pd2+ ions for photoreduction of CO2 into CH4. Journal of Power Sources, 519, 230738. https://doi.org/10.1016/j.jpowsour.2021.230738
Song, Y., Zhang, Y., Ma, M., Ren, J., Liu, C., & Tan, J. (2020). Visiblle light-assisted formaldehyde sensor based on HoFeO3 nanoparticles with sub-ppm detection limit. Ceramics International, 46(10), 16337-16344. https://doi.org/10.1016/j.ceramint.2020.03.191
Tan, P., Liu, M., Shao, Z., & Ni, M. (2017). Recent advances in perovskite oxides as electrode materials for nonaqueous lithium-oxygen batteries. Advanced Energy Materials, 7(13), 1602674. https://doi.org/10.1002/aenm.201602674
Tran, D. T., Nguyen, H. C. H., Le, T. T. T., & Nguyen, A. T. (2024). Effect of annealing temperature and precipitation agent on the structure, optical and magnetic characteristics of dysprosium orthoferrite nanoparticles. Materials Today Commnunications, 40, 109733. https://doi.org/10.1016/j.mtcomm.2024.109733