CALCULATION OF METASTABLE STATES IN SCATTERING AND EIGENVALUE PROBLEMS FOR COMPLEX POTENTIAL BARRIER
Main Article Content
Abstract
This paper presents the computational scheme and calculation results of metastable states in scattering and eigenvalue problems for complex potential barriers. For the scattering problem, the wave functions with S-scattering matrix are calculated at fixed real-valued energy of an incident wave, and the eigenvalue problem with corresponding eigenvalues are calculated as well. Then, we consider the wave functions of metastable states in the vicinity of these resonance energies for two of these problems. The solution to the problems is performed using the authors' software package with the high-accuracy finite element method. The calculation results are shown in table and
graph form.
Keywords
complex potential barrier, eigenvalue problem, KANTBP 4M program, metastable states, scattering problem
Article Details
References

Bagchi, B., & Quesne, C. (2000). sl(2,C) as a complex Lie algebra and the associated non-HermitianHamiltonians with real eigenvalues. Physics Letters A, 273(5), 285-292.

Bagchi, B., & Quesne, C. (2002). Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework. Physics Letters A, 300(1), 18-26.

Cervero, J. M., & Rodrıguez, A. (2004). Absorption in atomic wires. Phys. Rev. A, 70, 052705.

Chuluunbaatar, O., Gusev, A. A., Gerdt, V. P., Kaschiev, M. S., Rostovtsev, V. A., Samoylov, V., Tupikova, T., & Vinitsky, S. I. (2007). A symbolic-numerical algorithm forsolving the eigenvalue problem for a hydrogen atom in the magnetic field: cylindrical coordinates. CASC, Springer International Publishing Switzerland, LNCS., 4770(1), 118-133.

Gusev, A. A., Luong, L., H., Chuluunbaatar, O., Ulziibayar, V., Vinitsky, S. I., Derbov, V. L., Gozdz, A., & Rostovtsev, V. A. (2015). Symbolic-numeric solution of boundary-value problems for the Schrodinger equation using the finite element method: scattering problem andresonance states. CASC, Springer International Publishing Switzerland, LNCS., 9301(1), 182-197.

Gusev, A. A., Luong, L. L., Chuluunbaatar, O., & Vinitsky S. I., (2015). KANTBP 4M – program for solving boundary problems of the self-adjoint system of ordinary second order differential equations. JINRLIB. Retrieved from http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m/indexe

Jia, C. S., Lin, P. Y., & Sun, L. T. (2002). A new η-pseudo-Hermitian complex potential with PT symmetry. Physics Letters A, 298(2), 78-82.

Jia, C. S., Sun, Y., & Li, Y. (2002). Complexified Pöschl–Teller II potential model. Physics Letters A, 305(2), 231-238.

Muga, J. G., Palao, J. P., Navarro, B., & Egusquiza, I. L.(2004). Complex absorbing potentials. Physics Reports, 395(6), 357-426.


Sevastyanov, L. A., Sevastyanov, A. L., & Tyutyunnik, A. A.(2014). Analytical calculationsin maple to implement the method of adiabatic modes for modelling smoothly irregular integrated optical waveguide structures. CASC, Springer International Publishing Switzerland, LNCS., 8660(1), 419-431.

Streng, G., & Fics, G. (1977). Theory of finite element method. Moscow: World.

Vinitsky, S., Gusev, A., Chuluunbaatar, O., Rostovtsev, V., Luong, L. H., Derbov, V., & Krassovitskiy, P. (2013). Symbolic-numerical algorithm for generating cluster eigenfunctions: Tunneling of clusters through repulsive barriers. CASC, Springer International Publishing Switzerland, LNCS., 8136(1), 427-442.

Vinitsky, S., Gusev, A., Chuluunbaatar, O., Luong L. H., Gozdz, A., Derbov, V., Krassovitskiy, P. (2014). Symbolic-numeric algorithm for solving the problem of quantum tunneling of a diatomic molecule through repulsive barriers. CASC, Springer International Publishing Switzerland, LNCS., 8660(1), 472-490.

Znojil, M. (1999). PT-symmetric harmonic oscillators. Physics Letters A, 259(3), 220-223.
