Bất đẳng thức Hardy chứa toán tử Dunkl liên kết với HI-POTENTIAL

Nguyễn Tuấn Duy1, , Nguyễn Văn Phong1,2, Phạm Thị Thu Hiền1, Nguyen Van Bay3
1 Đại học Tài Chính - Marketing
2 Đại học Sài Gòn
3 Hung Vuong High school, Pleiku, Gia Lai, Vietnam

Nội dung chính của bài viết

Tóm tắt

Chúng tôi chứng minh bất đẳng thức dạng Hardy cho toán tử Dunkl liên kết với một HI-potential. Kết quả của chúng tôi là một sự mở rộng kết quả của Ghoussoub and Moradifam trong [11]

Chi tiết bài viết

Tài liệu tham khảo

1. Adimurthi, Chaudhuri, N., & Ramaswamy, M. (2002). An improved Hardy-Sobolev inequality and its application. Proceedings of the American Mathematical Society, 130(2), 489–505.
2. Barbatis, G., Filippas, S., & Tertikas, A. (2003). Series expansion for Lp Hardy inequalities. Indiana University Mathematics Journal, 52(1), 171–190.
3. Barbatis, G., Filippas, S., & Tertikas, A. (2004). A unified approach to improved Lp Hardy inequalities with best constants. Transactions of the American Mathematical Society, 356(6), 2169–2196.
4. Bogdan, K., Dyda, B., & Kim, P. (2016). Hardy inequalities and non-explosion results for semigroups. Potential Analysis, 44, 229–247.
5. Cazacu, C., & Zuazua, E. (2013). Improved multipolar Hardy inequalities. In Studies in phase space analysis with applications to PDEs (pp. 35–52). Birkhäuser.
6. Davies, E. B. (1999). A review of Hardy inequalities. In The Maz'ya anniversary collection (Vol. 2, pp. 55–67). Birkhäuser.
7. Dolbeault, J., & Volzone, B. (2012). Improved Poincaré inequalities. Nonlinear Analysis, 75(16), 5985–6001.
8. Evans, W. D., & Lewis, R. T. (2007). Hardy and Rellich inequalities with remainders. Journal of Mathematical Inequalities, 1(4), 473–490.
9. Filippas, S., & Tertikas, A. (2002). Optimizing improved Hardy inequalities. Journal of Functional Analysis, 192(1), 186–233.
10. Ghoussoub, N., & Moradifam, A. (2011). Bessel pairs and optimal Hardy and Hardy-Rellich inequalities. Mathematische Annalen, 349(1), 1–57.
11. Ghoussoub, N., & Moradifam, A. (2013). Functional inequalities: New perspectives and new applications (Mathematical Surveys and Monographs, Vol. 187). Providence, RI: American Mathematical Society.
12. Kufner, A., Maligranda, L., & Persson, L.-E. (2007). The Hardy inequality: About its history and some related results. Vydavatelský Servis.
13. Kufner, A., & Persson, L.-E. (2003). Weighted inequalities of Hardy type. World Scientific.
14. Rösler, M. (2003). Dunkl operators: Theory and applications. In Orthogonal polynomials and special functions (pp. 93–135). Springer.