EFFICIENT SYNTHESIS OF XANTHENE USING A DEEP EUTECTIC SOLVENT CATALYST UNDER SOLVENT-FREE
Main Article Content
Abstract
Several choline chloride–based deep eutectic solvents were synthesized in this study via conventional heating. The obtained catalysts exhibited intermolecular hydrogen bonding, as evidenced by FTIR spectra. In xanthene synthesis, the choline chloride–FeCl₃ DES showed the highest catalytic activity; optimal conditions were 80°C, 2 h, and 10 mol% catalyst (relative to benzaldehyde) under solvent-free conditions. Yields decreased for benzaldehyde derivatives bearing substituents compared with unsubstituted benzaldehyde.
Keywords
choline chloride, Deep eutectic solvent, FeCl3, para-toluenesulfonic acid, xanthene
Article Details
References
Azebaze, A.G., Meyer, M., Valentin, A., Nguemfo, E.L., Fomum, Z. T., & Nkengfack, A.E. (2006). Prenylated xanthone derivatives with antiplasmodial activity from Allanblackia monticola STANER L.C. Chem. Pharm. Bull. (Tokyo), 54, 111-113. https://doi.org/1248/cpb.54.111
Azizi, N., Dezfooli, S., & Mahmoudi, M. (2014). Greener synthesis of spiro oxindole in deep eutectic solvent. J. Mol. Liq. 194, 62-67. https://doi.org/10.1016/j.molliq.2014.01.009
Handy, S., Wright, M. (2013). Organic synthesis in deep eutectic solvents: Paal-Knorr reactions. Tetrahedron Lett., 54, 4377-4379. https://doi.org/10.1016/j.tetlet.2013.05.122
Balou, J., Khalilzadeh, M. A., & Zareyee, D. (2019). An efficient and reusable nano catalyst for the synthesis of benzoxanthene and chromene derivatives. Scientific Reports, 9, Article 3605. https://doi.org/10.1038/s41598-019-40431-x
Bušić, V., Roca, S., & Gašo-Sokač, D. (2023). Application of choline chloride-based deep eutectic solvents in the synthesis of hydrazones. Separations, 10(11), Article 551. https://doi.org/10.3390/separations10110551
Bosica, G., De Nittis, R., Borg, R. (2023). Solvent-free, one-pot, multicomponent synthesis of xanthene derivatives. Catalysts, 13, 561-568. https://doi.org/10.3390/catal13030561
Chhattise, P., Saleh, S., Pandit, V., Arbuj, S., & Chabukswar, V. (2020). ZnO nanostructures: A heterogeneous catalyst for the synthesis of benzoxanthene and pyranopyrazole scaffolds via a multi-component reaction strategy. Materials Advances, 1, 2339-2345. https://doi.org/10.1039/D0MA00403K
Fan, X. S., Zhen, Y., Zhang, X. Y., Hu, X. Y., & Wang, J. J. (2005). FeCl3.6H2O catalyzed reaction of aromatic aldehydes with 5,5-dimethyl-1, 3-cyclohexandione in ionic liquids. Chin. Chem. Lett., 16, 897-899.
Hu, H. C., Liu, Y. H., Li, B. L., Cui, Z. S., & Zhang, Z. H. (2015). Deep eutectic solvent based on choline chloride and malonic acid as an efficient and reusable catalytic system for one-pot synthesis of functionalized pyrroles, RSC Adv., 5, 7720-7728. https://doi.org/10.1039/C4RA13577F
Ion, R. M., Frackowiak, D., Planner, A., & Wiktorowicz, K. (1998). The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochim. Pol., 45, 833-845.
Khurana, J. M., & Magoo, D (2009). pTSA-catalyzed one-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in ionic liquid and neat conditions, Tetrahedron Lett., 50, 4777-4780. https://doi.org/10.1016/j.tetlet.2009.06.029
Kakeshpour, A., Moradi, A., & Moradi, F. (2024). Green synthesis of xanthenes: Utilizing sulfonated fructose as an efficient and eco-friendly catalyst, Journal of Pharmaceutical Research International, 36, 59-78. https://doi.org/10.9734/jpri/2024/v36i77539
Mohammadi, Z. G., Badiei, A. R., & Azizi, M. (2011). The one-pot synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes derivatives using sulfonic acid functionalized silica (SiO2-Pr-SO3H) under solvent free conditions. Scientia Iranica C 18, 453-457. https://doi.org/10.1016/j.scient.2011.05.008
Omolo, J. J., Johnson, M. M., Van Vuuren, S. F., & Koning, C. B. (2011). The synthesis of xanthones, xanthenediones, and spirobenzofurans: their antibacterial and antifungal activity. Bioorganic & Medicinal Chemistry Letters, 21, 7085-7088. https://doi.org/10.1016/j.bmcl.2011.09.088
Phadtare, S. B., & Shankarling, G. S. (2012). Greener coumarin synthesis by Knoevenagel condensation using biodegradable choline chloride. Environ. Chem. Lett., 10, 363-368. https://doi.org/10.1007/s10311-012-0360-8
Poupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Marcisse, G., Uchida-Ernouf, G., & Lacroix, R. (1978). Synthesis and antiinflammatory properties of bis (2-hydroxy-1-naphthyl)methane derivatives. I. Eur. J. Med. Chem., 13, 67-71. https://doi.org/10.1002/chin.197825154
Pouramiri, B., Shirvani, M., & Kermani, E.T. (2017). Facile and rapid synthesis of diverse xanthene derivatives using lanthanum(III) chloride/chloroacetic acid as an efficient andreusable catalytic system under solvent-free conditions. Journal of the Serbian Chemical Society, 82(5), 483-493. https://doi.org/10.2298/JSC160803034P
Rodriguez, N., Machiels, L., & Binnemans, K. (2019). p-Toluenesulfonic acid-based deep-eutectic solvents for solubilizing metal oxides. ACS Sustainable Chem. Eng., 7(4), 3940-3948. https://doi.org/10.1021/acssuschemeng.8b05072
Singh, A. S., Shendage, S.S ., & Nagarkar, J. M. (2014). Choline chloride based deep eutectic solvent as an efficient solvent for the benzylation of phenols. Tetrahedron Lett., 55, 7243-7246. https://doi.org/10.1016/j.tetlet.2014.11.053
Singhal, A., Yadav, A., Vashisht, S., Tyagi, K., Rangarajan, T.M., & Pasricha, S. (2025). Unveiling the choline chloride–thiourea (1:1) DES as a greener medium and reagent for pyrimidinethione synthesis from α,β-unsaturated carbonyl compounds, Org. Biomol. Chem., 23, 4951-4959. https://doi.org/10.1039/D5OB00182J
Singh, B., Lobo, H., & Shankarling, G. (2011). Selective N-alkylation of aromatic primary amines catalyzed by bio-catalyst or deep eutectic solvent. Catal. Lett., 141, 178-182. https://doi.org/10.1007/s10562-010-0479-9
Song, G., Wang, B., Luo, H., & Yang, L. (2007). Fe3+-montmorillonite as a cost-effective and recyclable solid acidic catalyst for the synthesis of xanthenediones. Catal. Commun., 8,
673-676. https://doi.org/10.1016/j.catcom.2005.12.018
Smith, E. L., Abbott, A.P., & Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chem. Rev., 114, 11060-11082. https://doi.org/10.1021/cr300162p
Teja, C., & Khan, F. R. N. (2019). Choline chloride-based deep eutectic systems in sequential Friedländer reaction and Palladium-Catalyzed sp3 CH functionalization of methyl ketones, ACS Omega, 4, 8046-8055. https://doi.org/10.1021/acsomega.9b00310
Zhang, F., Liang, C., Wu, X., & Li, H. (2014). A nanospherical ordered mesoporous Lewis acid polymer for the direct glycosylation of unprotected and unactivated sugars in water. Angew. Chem. Int. Ed., 53, 8498-8502. https://doi.org/10.1002/anie.201404353