AN EFFICIENT XANTHENE SYNTHESIS WITH DEEP EUTECTIC SOLVENT CATALYST UNDER SOLVENT-FREE CONDITION
Main Article Content
Abstract
Several deep eutectic solvents based on choline chloride are synthesized in this study via the conventional heating method. The obtained catalysts were characterized by the presence of intermolecular hydrogen bonds as indicated by FTIR spectra. The analysis of catalytic efficiency in xanthene synthesis showed that the catalyst based on choline chloride and FeCl3 is the most effective, with optimal conditions being a temperature of 80 °C, a reaction time of 2 hours, and a quantity of catalyst of 10% mol relative to benzaldehyde under solvent-free conditions. The yield of xanthene derivative synthesis lowered when the derivative of benzaldehyde bears different substituents, in comparison to when benzaldehyde is unsubstituted.
Keywords
Deep eutectic solvent, choline chloride, para-toluenesulfonic acid, FeCl3, xanthene.
Article Details
References
Azebaze, A.G., Meyer, M., Valentin, A., Nguemfo, E.L., Fomum, Z. T., Nkengfack, A.E. (2006). Prenylated xanthone derivatives with antiplasmodial activity from Allanblackia monticola STANER L.C. Chem. Pharm. Bull. (Tokyo) 54, 111–113. doi: 10.1248/cpb.54.111
Azizi, N., Dezfooli, S., Mahmoudi, M. (2014). Greener synthesis of spiro oxindole in deep eutectic solvent. J. Mol. Liq. 194, 62–67. https://doi.org/10.1016/j.molliq.2014.01.009
Handy, S., Wright, M. (2013). Organic synthesis in deep eutectic solvents: Paal-Knorr reactions. Tetrahedron Lett. 54, 4377–4379. https://doi.org/10.1016/j.tetlet.2013.05.122
Balou, J., Khalilzadeh, M.A., Zareyee, D. (2019). An efficient and reusable nano catalyst for the synthesis of benzoxanthene and chromene derivatives. Scientific Reports 9, 3605. https://doi.org/10.1038/s41598-019-40431-x
Bušić, V., Roca, S., Gašo-Sokač, D. (2023). Application of choline chloride-based deep eutectic solvents in the synthesis of hydrazones. Separations 10(11), 551. https://doi.org/10.3390/separations10110551
Chhattise, P., Saleh, S., Pandit, V., Arbuj, S., Chabukswar, V. (2020). ZnO nanostructures: A heterogeneous catalyst for the synthesis of benzoxanthene and pyranopyrazole scaffolds via a multi-component reaction strategy. Materials Advances 1, 2339-2345. https://doi.org/10.1039/D0MA00403K
Fan, X.S., Zhen, Y., Zhang, X.Y., Hu, X.Y., Wang, J.J. (2005). FeCl3.6H2O catalyzed reaction of aromatic aldehydes with 5,5-dimethyl-1, 3-cyclohexandione in ionic liquids. Chin. Chem. Lett. 16, 897–899.
Hu, H.C., Liu, Y.H., Li, B.L., Cui, Z.S., Zhang, Z.H. (2015). Deep eutectic solvent based on choline chloride and malonic acid as an efficient and reusable catalytic system for one-pot synthesis of functionalized pyrroles, RSC Adv. 5, 7720-7728. https://doi.org/10.1039/C4RA13577F
Ion, R.M., Frackowiak, D., Planner, A., Wiktorowicz, K. (1998). The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochim. Pol. 45, 833–845.
Mohammadi, Z.G., Badiei, A.R., Azizi, M. (2011). The one-pot synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes derivatives using sulfonic acid functionalized silica (SiO2-Pr-SO3H) under solvent free conditions. Scientia Iranica C 18, 453–457. https://doi.org/10.1016/j.scient.2011.05.008
Omolo, J.J., Johnson, M.M., Van Vuuren, S.F., Koning, C.B. (2011). The synthesis of xanthones, xanthenediones, and spirobenzofurans: their antibacterial and antifungal activity. Bioorg. Med. Chem. Lett. 21, 7085–7088. https://doi.org/10.1016/j.bmcl.2011.09.088
Phadtare, S.B., Shankarling, G.S. (2012). Greener coumarin synthesis by Knoevenagel condensation using biodegradable choline chloride. Environ. Chem. Lett. 10, 363–368. https://doi.org/10.1007/s10311-012-0360-8
Poupelin, J.P., Saint-Ruf, G., Foussard-Blanpin, O., Marcisse, G., Uchida-Ernouf, G., Lacroix, R., (1978). Synthesis and antiinflammatory properties of bis (2-hydroxy-1-naphthyl)methane derivatives. I. Eur. J. Med. Chem. 13, 67–71. doi:10.1002/chin.197825154
Pouramiri, B., Shirvani, M., Kermani, E.T. (2017). Facile and rapid synthesis of diverse xanthene derivatives using lanthanum(III) chloride/chloroacetic acid as an efficient andreusable catalytic system under solvent-free conditions. Journal of the Serbian Chemical Society, 82(5), 483-493. https://doi.org/10.2298/JSC160803034P
Rodriguez, N., Machiels. L., Binnemans, K. (2019). p-Toluenesulfonic acid-based deep-eutectic solvents for solubilizing metal oxides. ACS Sustainable Chem. Eng. 7(4), 3940-8. https://doi.org/10.1021/acssuschemeng.8b05072
Singh, A.S., Shendage, S.S., Nagarkar, J.M. (2014). Choline chloride based deep eutectic solvent as an efficient solvent for the benzylation of phenols. Tetrahedron Lett. 55, 7243–7246. https://doi.org/10.1016/j.tetlet.2014.11.053
Singhal, A., Yadav, A., Vashisht, S., Tyagi, K., Rangarajan, T.M., Pasricha, S. (2025). Unveiling the choline chloride–thiourea (1:1) DES as a greener medium and reagent for pyrimidinethione synthesis from α,β-unsaturated carbonyl compounds, Org. Biomol. Chem. 23, 4951-4959. https://doi.org/10.1039/D5OB00182J
Singh, B., Lobo, H., Shankarling, G. (2011). Selective N-alkylation of aromatic primary amines catalyzed by bio-catalyst or deep eutectic solvent. Catal. Lett. 141, 178–182. https://doi.org/10.1007/s10562-010-0479-9
Song, G., Wang, B., Luo, H., Yang, L. (2007). Fe3+-montmorillonite as a cost-effective and recyclable solid acidic catalyst for the synthesis of xanthenediones. Catal. Commun. 8, 673–676. https://doi.org/10.1016/j.catcom.2005.12.018
Smith, E.L.;,Abbott, A.P., Ryder, K.S. (2014). Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114, 11060–11082. https://doi.org/10.1021/cr300162p
Teja, C., Khan, F.R.N. (2019). Choline chloride-based deep eutectic systems in sequential Friedländer reaction and Palladium-Catalyzed sp3 CH functionalization of methyl ketones, ACS Omega 4, 8046−8055. https://doi.org/10.1021/acsomega.9b00310
Zhang, F., Liang, C., Wu, X., Li, H. (2014). A nanospherical ordered mesoporous Lewis acid polymer for the direct glycosylation of unprotected and unactivated sugars in water. Angew. Chem. Int. Ed. 53, 8498–8502. https://doi.org/10.1002/anie.201404353