AN EFFICIENT XANTHENE SYNTHESIS WITH DEEP EUTECTIC SOLVENT CATALYST UNDER SOLVENT-FREE CONDITION
Nội dung chính của bài viết
Tóm tắt
Bài báo nghiên cứu tổng hợp một số deep eutectic solvents dựa trên choline chloride sử dụng phương pháp đun nóng truyền thống. Các xúc tác điều chế được xác định sự hình thành liên kết hydrogen liên phân tử dựa trên phổ FTIR. Kết quả so sánh hiệu quả xúc tác trên phản ứng tổng hợp xanthene cho thấy xúc tác điều chế từ choline chloride và FeCl3 có hiệu quả tốt nhất với điều kiện thực hiện phản ứng tối ưu là nhiệt độ 80 oC, thời giản phản ứng 2h và lượng xúc tác sử dụng 10% mol so với benzaldehyde trong điều kiện không dung môi. Khi thay đổi dẫn xuất của benzaldehyde mang các nhóm thế khác nhau thì hiệu suất tổng hợp dẫn xuất xanthene thấp hơn so với khi benzaldehyde không mang nhóm thế.
Từ khóa
Deep eutectic solvent, choline chloride, para-toluenesulfonic acid, FeCl3, xanthene.
Chi tiết bài viết
Tài liệu tham khảo
Azebaze, A.G., Meyer, M., Valentin, A., Nguemfo, E.L., Fomum, Z. T., Nkengfack, A.E. (2006). Prenylated xanthone derivatives with antiplasmodial activity from Allanblackia monticola STANER L.C. Chem. Pharm. Bull. (Tokyo) 54, 111–113. doi: 10.1248/cpb.54.111
Azizi, N., Dezfooli, S., Mahmoudi, M. (2014). Greener synthesis of spiro oxindole in deep eutectic solvent. J. Mol. Liq. 194, 62–67. https://doi.org/10.1016/j.molliq.2014.01.009
Handy, S., Wright, M. (2013). Organic synthesis in deep eutectic solvents: Paal-Knorr reactions. Tetrahedron Lett. 54, 4377–4379. https://doi.org/10.1016/j.tetlet.2013.05.122
Balou, J., Khalilzadeh, M.A., Zareyee, D. (2019). An efficient and reusable nano catalyst for the synthesis of benzoxanthene and chromene derivatives. Scientific Reports 9, 3605. https://doi.org/10.1038/s41598-019-40431-x
Bušić, V., Roca, S., Gašo-Sokač, D. (2023). Application of choline chloride-based deep eutectic solvents in the synthesis of hydrazones. Separations 10(11), 551. https://doi.org/10.3390/separations10110551
Chhattise, P., Saleh, S., Pandit, V., Arbuj, S., Chabukswar, V. (2020). ZnO nanostructures: A heterogeneous catalyst for the synthesis of benzoxanthene and pyranopyrazole scaffolds via a multi-component reaction strategy. Materials Advances 1, 2339-2345. https://doi.org/10.1039/D0MA00403K
Fan, X.S., Zhen, Y., Zhang, X.Y., Hu, X.Y., Wang, J.J. (2005). FeCl3.6H2O catalyzed reaction of aromatic aldehydes with 5,5-dimethyl-1, 3-cyclohexandione in ionic liquids. Chin. Chem. Lett. 16, 897–899.
Hu, H.C., Liu, Y.H., Li, B.L., Cui, Z.S., Zhang, Z.H. (2015). Deep eutectic solvent based on choline chloride and malonic acid as an efficient and reusable catalytic system for one-pot synthesis of functionalized pyrroles, RSC Adv. 5, 7720-7728. https://doi.org/10.1039/C4RA13577F
Ion, R.M., Frackowiak, D., Planner, A., Wiktorowicz, K. (1998). The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy. Acta Biochim. Pol. 45, 833–845.
Mohammadi, Z.G., Badiei, A.R., Azizi, M. (2011). The one-pot synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes derivatives using sulfonic acid functionalized silica (SiO2-Pr-SO3H) under solvent free conditions. Scientia Iranica C 18, 453–457. https://doi.org/10.1016/j.scient.2011.05.008
Omolo, J.J., Johnson, M.M., Van Vuuren, S.F., Koning, C.B. (2011). The synthesis of xanthones, xanthenediones, and spirobenzofurans: their antibacterial and antifungal activity. Bioorg. Med. Chem. Lett. 21, 7085–7088. https://doi.org/10.1016/j.bmcl.2011.09.088
Phadtare, S.B., Shankarling, G.S. (2012). Greener coumarin synthesis by Knoevenagel condensation using biodegradable choline chloride. Environ. Chem. Lett. 10, 363–368. https://doi.org/10.1007/s10311-012-0360-8
Poupelin, J.P., Saint-Ruf, G., Foussard-Blanpin, O., Marcisse, G., Uchida-Ernouf, G., Lacroix, R., (1978). Synthesis and antiinflammatory properties of bis (2-hydroxy-1-naphthyl)methane derivatives. I. Eur. J. Med. Chem. 13, 67–71. doi:10.1002/chin.197825154
Pouramiri, B., Shirvani, M., Kermani, E.T. (2017). Facile and rapid synthesis of diverse xanthene derivatives using lanthanum(III) chloride/chloroacetic acid as an efficient andreusable catalytic system under solvent-free conditions. Journal of the Serbian Chemical Society, 82(5), 483-493. https://doi.org/10.2298/JSC160803034P
Rodriguez, N., Machiels. L., Binnemans, K. (2019). p-Toluenesulfonic acid-based deep-eutectic solvents for solubilizing metal oxides. ACS Sustainable Chem. Eng. 7(4), 3940-8. https://doi.org/10.1021/acssuschemeng.8b05072
Singh, A.S., Shendage, S.S., Nagarkar, J.M. (2014). Choline chloride based deep eutectic solvent as an efficient solvent for the benzylation of phenols. Tetrahedron Lett. 55, 7243–7246. https://doi.org/10.1016/j.tetlet.2014.11.053
Singhal, A., Yadav, A., Vashisht, S., Tyagi, K., Rangarajan, T.M., Pasricha, S. (2025). Unveiling the choline chloride–thiourea (1:1) DES as a greener medium and reagent for pyrimidinethione synthesis from α,β-unsaturated carbonyl compounds, Org. Biomol. Chem. 23, 4951-4959. https://doi.org/10.1039/D5OB00182J
Singh, B., Lobo, H., Shankarling, G. (2011). Selective N-alkylation of aromatic primary amines catalyzed by bio-catalyst or deep eutectic solvent. Catal. Lett. 141, 178–182. https://doi.org/10.1007/s10562-010-0479-9
Song, G., Wang, B., Luo, H., Yang, L. (2007). Fe3+-montmorillonite as a cost-effective and recyclable solid acidic catalyst for the synthesis of xanthenediones. Catal. Commun. 8, 673–676. https://doi.org/10.1016/j.catcom.2005.12.018
Smith, E.L.;,Abbott, A.P., Ryder, K.S. (2014). Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114, 11060–11082. https://doi.org/10.1021/cr300162p
Teja, C., Khan, F.R.N. (2019). Choline chloride-based deep eutectic systems in sequential Friedländer reaction and Palladium-Catalyzed sp3 CH functionalization of methyl ketones, ACS Omega 4, 8046−8055. https://doi.org/10.1021/acsomega.9b00310
Zhang, F., Liang, C., Wu, X., Li, H. (2014). A nanospherical ordered mesoporous Lewis acid polymer for the direct glycosylation of unprotected and unactivated sugars in water. Angew. Chem. Int. Ed. 53, 8498–8502. https://doi.org/10.1002/anie.201404353